

Lagrangian Fluid Dynamics
Using Smoothed Particle Hydrodynamics

Micky Kelager
micky@kelager.dk

January 9, 2006

DIKU
Department of Computer Science • University of Copenhagen

Universitetsparken 1 • DK-2100 Copenhagen • Denmark

mailto:micky@kelager.dk?subject=LFD/SPH

Abstract

Computational fluid dynamics is a hot topic in Computer Graphics. The capability to
reproduce realistic fluids numerically has gained an increased interest the last
decade. Grid-based methods have been favored the most to solve the mathematical
equations for fluid flow, but often they lack the ability to create interactive fluid
simulations together with detailed fluid surfaces. Interactive fluid dynamics is of
essential interest in real-time applications, such as computer games or virtual
surgery simulators. Using the smoothed particle hydrodynamics (SPH) method, we
have implemented a stable particle-based approach to solve the motion of
interactive fluids. With focus on the simulation part we provide a thorough insight of
the mathematical theory of particle-based fluids. Detailed real-time results are
obtained for small-scale fluid simulations of water and viscous mucus, but the
interactivity is sacrificed when near-incompressibility is enforced.

ii

Contents

1 Introduction...1
1.1 Software Solutions ...1
1.2 Goals..3
1.3 Overview..3

2 Classical Fluid Dynamics..4
2.1 The Navier-Stokes Equations...4
2.2 Eulerian Fluids ..6
2.3 Summery ...7

3 Smoothed Particle Hydrodynamics ...8
3.1 Definitions ...8
3.2 Smoothing Kernels .. 11
3.3 Summery .. 13

4 Lagrangian Fluid Dynamics... 14
4.1 Mass-Density.. 16
4.2 Internal Forces... 17

4.2.1 Pressure ... 17
4.2.2 Viscosity.. 20

4.3 External Forces .. 23
4.3.1 Gravity... 23
4.3.2 Buoyancy .. 23
4.3.3 Surface Tension... 24
4.3.4 User Interaction ... 26

4.4 Collision Handling .. 26
4.4.1 Collision Detection... 27
4.4.2 Implicit Primitives .. 28
4.4.3 Collision Response .. 32
4.4.4 Discussion.. 34

4.5 Numerical Time Integration .. 36
4.5.1 The Implicit Euler Scheme .. 36
4.5.2 The Verlet Scheme .. 36
4.5.3 The Leap-Frog Scheme.. 37
4.5.4 Discussion.. 38

4.6 Summery .. 38

5 Implementation.. 40
5.1 Fast Nearest Neighbor Search ... 41

5.1.1 Spatial Hashing.. 41

iii

5.1.2 Spatial Particle Queries... 42
5.2 Incompressibility.. 43

5.2.1 Discussion.. 44
5.3 Physical Parameters.. 45

5.3.1 Fluid Volume and Particle Mass 45
5.3.2 Smoothing Kernel Support Radius................................. 45
5.3.3 Time Integrator and Time Step 47
5.3.4 Gas Stiffness and Rest Density 47
5.3.5 Viscosity Coefficient... 48
5.3.6 Surface Tension and Threshold...................................... 49

5.4 Fluid Materials ... 50
5.4.1 Water .. 50
5.4.2 Mucus... 51
5.4.3 Steam ... 51

5.5 Rendering... 52
5.6 The Lagrangian Fluid Method ... 53

5.6.1 Initialize SPH System... 53
5.6.2 Compute Density and Pressure 54
5.6.3 Compute Internal Forces... 54
5.6.4 Compute External Forces.. 54
5.6.5 Time Integration and Collision Handling 55
5.6.6 Render Particles .. 55

5.7 Discussion.. 55
5.8 Summery .. 57

6 Results.. 59
6.1 Fluid Properties.. 59
6.2 Fluid Flows ... 63
6.3 Sanity and Stability .. 68
6.4 Performance Tests .. 71
6.5 Issues and Challenges .. 73

7 Future Work ... 77
7.1 GPU Utilization ... 77
7.2 Fluid Visualization.. 77
7.3 Incompressible Lagrangian Fluids.. 78
7.4 Advanced Fluid Interactions ... 78

8 Conclusion.. 79
8.1 Contributions.. 80

References... 81

iv

Preface

This is a graduate project in computer science at DIKU, the Department of
Computer Science, University of Copenhagen. The project caters for people
interested in a detailed particle-based description of a numerical solution to
interactive fluid simulations. This report is written by Micky Kelager, DIKU.
Supervisor is assistant professor Kenny Erleben, DIKU.

Contributions

Based on the previous work done in the field of particle-based fluid simulations, this
project contributes a thorough insight of the mathematical theory of particle-based
fluid motion, physically correct fluid parameters, stable collision handling between
fluid particles and implicit primitives, visual analysis of fluid flows using SPH in
Computer Graphics, and a complete open-source implementation of particle-based
fluids.

Prerequisites

The reader is assumed to have passed the undergraduate studies in computer
science or equivalent, and to possess knowledge in linear algebra and calculus
corresponding to the undergraduate courses in mathematics. A basic knowledge in
classical mechanics is also assumed, i.e. the physical laws of motion, and an
interest in physics-based animation will do no harm.

Acknowledgements

Personally, I wish to thank my girlfriend for accepting and supporting the endless
hours I have spent in front of my computer completing this project. Thanks to Theo
Engell-Nielsen for reviewing this work and for providing useful comments and
suggestions. Also thanks to Henrik Dohlmann for following up on the standard
appliances of the implementation in OpenTissue. Finally, huge thanks to my
supervisor, Kenny Erleben, for all the hours spent helping me complete the project
and for providing graceful guidelines, theoretically and in practice. Always available
at days, nights, weekends, and holidays, your guidance has been most appreciated.

Micky Kelager, DIKU.
January 9, 2006.

v

1 Introduction

Today computational fluid dynamics (CFD) is a hot topic in Computer Graphics.
Researchers concentrate on developing new and better methods to simulate and
visualize fluids. Common for them all is the mathematical equations that describe
the motion of fluids. A fluid is commonly said to be one of the hardest phenomena
to simulate realistically, and even harder is the ability to simulate detailed fluids
interactively. Offline simulations are the most common, where a vast majority of
either particles, grid cells, or a hybrid of grid and particles are being used
throughout the simulation. High resolution images can be produced when the fluid
is visualized using rendering techniques such as ray tracing.
 Grid-based fluid implementations have been favored the most in Computer
Graphics for the last decade. When it comes to real-time detailed fluid simulations
in 3D a grid-based solution is not optimal. Recently, particles have been introduced
into CFD in Computer Graphics. It is out understanding that particles have proven to
be a good choice for detailed small-scale fluid simulation that allow for interactive
rates. Interactivity is required in areas of computer games, real-time surgery
simulators, and as a draft version of an animation that can give the animator a good
understanding of the final result. We are interested in a fast and stable particle-
based method for fluid simulations to be integrated into OpenTissue, which is an
academic open-source project for physics-based animation and surgery simulation.
 Animation of fluids consists of two equally interesting parts; simulation and
visualization. We believe that much work on fluid visualization has already been
achieved in Computer Graphics, and for that reason this report will focus on the
simulation part. That is, the mathematics and dynamics required to describe the
complex motion of fluids.

1.1 Software Solutions

In this section we will briefly describe two software solutions that provide particle-
based fluids. Both solutions are commercial products that aim at the professional
end user.
 RealFlow3 by Next Limit Technologies [30] is a complete standalone fluid
application that supports different types of fluids, e.g. gasses and liquids. RealFlow3
calculates the particle motions to simulate fluid flows that are designed by an end
user. Interactions with the fluid must be performed offline, i.e. from a key-frame
animation. The pre-computed particle motions, together with other particle
attributes, can be imported into various 3D visualization applications for final
rendering of the fluid surface. Figure 1.1 depicts a screenshot from RealFlow3
performing a computation of a simple water simulation of approximately
particles. The particles are emitted from a circular source, and rendered as dots
with no volume. The computation time increased quickly for each frame, and the

3,000

1

Chapter 1. Introduction

first frames took 86 seconds to compute in average, i.e. a rate of 1. frames
per second. RealFlow

150 74
3 works offline even for small-scale fluid simulations.

Figure 1.1 Screenshot from RealFlow3 by from Next Limit Technologies.

 PhysX by AGEIA [29] provides interactive fluid simulations in real time. However,
additional hardware support must be present if real-time rendering of the free fluid
surface is required. AGEIA is the manufacturer of the new physics processing unit
(PPU) that aims at easing the CPU by taking over the computational work from the
demanding physics calculations. A surface extraction algorithm is implemented on
the PPU that provides real-time triangulation of isosurfaces, e.g. the free surfaces of
liquid fluids. The new PPU boards are only available on the PC, as it is assumed that
next generation consoles, e.g. Xbox360 and Sony Playstation 3, have enough
processor power to perform the same operations without support of additional
hardware. Figure 1.2 depicts a screenshot from a PPU supported fluid simulation.

Figure 1.2 Screenshot from PhysX by AGEIA for a real-time fluid animation.

2

Chapter 1. Introduction

 Recently AGEIA has released a PhysX SDK, formally known as NovodeX, which
supports fluids in hardware using the PPU, but also in software. The SDK does not
reveal any details on the implementation of the fluid solver. At this stage we have
not been able to implement any interesting fluid effects using the SDK, but we will
assume that the software can create convincing fluids, as one of the architects
behind the implementation is Dr. Matthias Müller, author of various papers on
particle-based fluid simulations. As PhysX is a middleware physics engine that
targets computer games, it has been designed with performance in mind. It is not
uncommon for commercial physics engines to hack the physical properties to obtain
stability very quickly.

1.2 Goals

The primary goal of this work is to develop a particle-based method that is suitable
for simulating fluids at interactive rates. Another goal for this work is to use correct
physical quantities and parameters for the simulations. Physically correct
parameters are important for potential users and programmers of our fluid solver,
as they can rely on reality rather than on fiction.
 To achieve the goals satisfactory it is important to understand the theories of
fluid dynamics. Readers of this report should be able to learn about our particle-
based approach of fluid simulation, and to comply with this reason we will describe
the details of the mathematical and physical toolboxes that render interactive fluids
possible.

1.3 Overview

In the next chapter we will briefly sum up the previous work done on grid-based
fluids in Computer Graphics, which also includes the main theorem of fluid motion.
In Chapter 3 we introduce the reader to smoothed particle hydrodynamics, a
mathematical toolbox that makes Lagrangian fluids possible for our purpose.
Chapter 4 describes the dynamics of a particle-based fluid simulation in full, and
implementation details along with physical secrets are reviled in Chapter 5. The
results from our work are presented in Chapter 6. The topics presented in this work
serve as a basis on particle-based fluids, and Chapter 7 highlights some of the
interesting improvements and extensions that we believe follow naturally. Finally,
we conclude our work In Chapter 8.

3

2 Classical Fluid Dynamics

In Computer Graphics the motion of fluids is an important issue when simulating
everyday phenomena, e.g. rain, mud, pouring water, cigarette smoke, steam, wet
foam, ocean waves, etc. In this chapter we will briefly introduce the reader to the
famous Navier-Stokes equations of fluid flow, which serve as a basis for this work.
To implement the Navier-Stokes equations for fluid motion, two fundamental
approaches exist; a grid-based method, also called the Eulerian method, and a
particle-based method, known as the Lagrangian method. The Euler grid-based
method is by far employed the most in Computer Graphics, and the Navier-Stokes
equations have been extended to simulate many interesting effects, including
surface tension for animation of water and milk [20], viscoelasticity and
elastoplasticity for animation of mucus, pudding, and clay [10], and thermal
buoyancy for animation of hot, turbulent gas [9]. The majority of the Eulerian
implementations and their extensions work offline, i.e. they do not contribute to an
interactive solution.
 If the surface of a liquid alone is the interesting part, the most commonly
interactive methods used today, e.g. in computer games, are sinusoidal and gravity
waves that can be implemented as a vertex shader on a graphics processing unit
(GPU) very efficiently. A hybrid between gravity waves and the Navier-Stokes
equations is the shallow water equations [18], which can simulate the interactions
between dynamic waves and the boundaries at interactive rates.

2.1 The Navier-Stokes Equations

The basic physical quantities of an isothermal, viscous fluid are velocity , mass-
density , and pressure . The quantities are considered as continuous fields in
the fluid. The classical formulation of the motion for incompressible fluid flow over
time t is governed by the Navier-Stokes equations [

u
ρ p

7],

 () ()p
t

ρ μ∂ + ⋅ ∇ = −∇ + ∇⋅ ∇ +
∂

u u u f , (2.1)

 , (2.2) 0∇⋅ =u

where is the viscosity of the fluid, and f is the sum of external force-densities
acting on the fluid, e.g. gravity.

μ

 The Navier-Stokes formulation of fluid motion is based on a grid structure, see
Section 2.2 for further details on grids. This ultimately means that field quantities
not only depend on time, but also on grid positions ()tr , which also depend on time.
In three-dimensional space the position vector is given by

4

Chapter 2. Classical Fluid Dynamics

 . (2.3) () () () ()(, , Tt x t y t z t=r)

 Equation (2.1) describes the conservation of momentum, and basically it is
Newton’s 2nd law for a fluid. The right hand side represents the total force-densities,
while the left hand side is the product of mass-densities and acceleration-densities.
For a fluid the acceleration-density is the full time derivative of the velocity field.
Using the chain rule on the velocity field yields,

()()

()

,

. . , ,

. .

.

T T

T

yd xt tdt t x t y t z t

yx z
t x y z t t t

t x y z

t

∂∂ ∂ ∂ ∂ ∂ ∂= + + +∂ ∂ ∂ ∂ ∂ ∂ ∂
z

⎡ ⎤ ⎡ ⎤∂∂ ∂ ∂ ∂ ∂ ∂= + ⋅⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎛ ⎞⎡ ⎤ ⎟∂ ∂ ∂ ∂⎜ ⎟= + ⋅⎜ ⎢ ⎥ ⎟⎜ ⎟∂ ∂ ∂ ∂⎜ ⎢ ⎥⎣ ⎦⎝ ⎠

∂= + ⋅∇∂

u u u uu r

u u u u

u u u

u u

 (2.4)

Generically, the rate of change of a continuous, dimensionless field, , in the

fluid that follows the fluid over time, is called the substantial derivative of , and is
defined as

()(,t tψ r)
ψ

 d
dt t
ψ ψ ψ∂= + ⋅ ∇∂ u , (2.5)

where is the advection term, and ψ⋅∇u (2.4) justifies how this term arrives,
mathematically. The substantial derivative is the full time derivative of the field in
the Eulerian view.

ψ

 Equation (2.2) describes the conservation of mass for an incompressible fluid,
and was originally formulated in Euler’s Equations [7]. In general, the mass
conservation equation for a compressible fluid is also known as the continuity
equation. It is the substantial derivative of the density field, which yields

 () 0
t
ρ ρ∂ +∇⋅ =

∂
u . (2.6)

When the mass-density is constant throughout the fluid, it implies that 0t
ρ∂ =∂ and

. The fluid is then called incompressible, and we end up with the
divergence free velocity field as in
ρ∇⋅ = ∇⋅u u

(2.2).

5

Chapter 2. Classical Fluid Dynamics

2.2 Eulerian Fluids

The Navier-Stokes equations (2.1) and (2.2) formulate the motion of an Eulerian
fluid. The fluid is though of as being composed of fluid cells, aligned in a regular
grid, each of which contains a number of fluid molecules, or particles. Figure 2.1
depicts a basic layout of a grid-based fluid, which has been reduced to two-
dimensions for reasons of clarity. Due to the coarse resolution of the sized
grid, the whole fluid surface is contained in the same row, which is a common
problem for details and visualization.

6 6×

 The Navier-Stokes equations defy a full analytic solution, but can be solved
numerically using several steps for each component of the equations. One of the
most important steps is the Helmholtz-Hodge Decomposition, which is a
mathematical technique that allows the pressure gradient () and p−∇ (2.2) to be
combined into a single equation. The different steps are solved using explicit,
implicit, and semi-implicit integrators. The grid provides a solution to estimate
derivatives using a finite difference method (FDM). For theoretical and
implementation details on Eulerian fluid see [33, 11, 7].

Figure 2.1 Euler grid-based fluid structure in 2D. The discrete velocity field is represented at the

dots.

 Although the Eulerian method provides a better description of some of the fluid
properties, e.g. the mass-density and pressure field, a major disadvantage by the
method is the grid itself. The fluid is constrained to stay with the grid. It simply
cannot exist outside the grid domain, and thus makes it a difficult problem to let the
fluid flow naturally, e.g. when a fluid container fractures. Adaptive grid structures
have been used to overcome the fixed grid for different purposes. In [20] an
adaptive octree method is introduced to simulate high detailed water and smoke.
Another issue is regarding the grid size and memory consumption. In 3D a coarse
grid uses an enormous amount of memory to simulate a high resolution fluid. Newer
sparse level set data structures can overcome the memory problem of coarse grids.
Also a dynamic expansion of the grid domain is no longer a problem, i.e. the grid
can grow endlessly. In [13] the run-length encoded (RLE) sparse level set is

6

Chapter 2. Classical Fluid Dynamics

presented which is highly scalable. In [26] the dynamic tubular grid (DT-Grid) allows
for a very low memory footprint when representing high resolution level sets. In [14]
the hierarchical run-length encoded (H-RLE) level set data structure is introduced
that combine the best features from the DT-Grid and the RLE sparse level set. The
Hamilton-Jacobi partial differential equations (PDEs), can generally be solved using
level set methods [27]. The Navier-Stokes equations can be adopted into Hamilton-
Jacobi PDEs, thus the new sparse level set structures can be used to simulate fluids
with high details and manageable memory consumptions.
 Even though special data structures can be used to increase the details and
lower the memory consumptions for Eulerian grid-based fluid simulations, grid-
based methods still cannot produce interactive results for detailed fluids. In [8] the
simulation time for viscous mud is minutes per frame on a grid of 150
cells, and the computation time is about - minutes per frame for detailed water
and milk with an effective grid resolution of 512 [

3 200 150× ×
4 5

512 512× × 20].

2.3 Summery

In this chapter the following important topics are covered/achieved:

• The Navier-Stokes equations for an incompressible, isothermal fluid is based
on a grid formulation, which yields

 () ()p
t

ρ μ∂ + ⋅ ∇ = −∇ + ∇⋅ ∇ +
∂

u u u f ,

 . 0∇⋅ =u

• The field quantities for an Eulerian fluid depends on time, t , and grid
position, ()tr , e.g. the pressure field, . ()(),p t tr

• The frame computation time for a detailed grid-based fluid simulation in 3D
is several minutes, thus the Eulerian fluid method in general does not
support an interactive solution.

7

3 Smoothed Particle Hydrodynamics

The smoothed particle hydrodynamics (SPH) formulation originates from the field of
computational astrophysics and is designed for compressible flow problems [21].
The method has been widely used to simulate astrophysical phenomena, where
complex problems could be expressed and understood more intuitively. SPH is an
interpolation method to approximate values and derivatives of continuous field
quantities by using discrete sample points. The sample points are identified as
smoothed particles that carry concrete entities, e.g. mass, position, velocity, etc.,
but particles can also carry estimated physical field quantities dependent of the
problem, e.g. mass-density, temperature, pressure, etc. The SPH quantities are
macroscopic and obtained as weighted averages from the adjacent particles.
 Compared to other well-known methods for numerical approximation of
derivatives, e.g. the finite difference method, which requires the particles to be
aligned on a regular grid, SPH can approximate the derivatives of continuous fields
using analytical differentiation on particles located completely arbitrary. Each
particle is thought of as occupying a fraction of the problem space, and to get more
accurate weighted quantity averages the sample particles must be dense.
 The SPH method was adapted into the Computer Graphics community in [32],
where it was used to solve diffusion equations numerically. It has since been
extended for various problems, including highly deformable bodies [5], lava flows
[34], and computational fluid dynamics [23].

3.1 Definitions

SPH is basically an interpolation method. The interpolation is based on the theory of
integral interpolants using kernels that approximate a delta function. The integral
interpolant of any quantity function, , is defined over all the space, , by ()A r Ω

 () () (),IA A W h
Ω

′ ′= − d ′∫r r r r r

)j hr

, (3.1)

where is any point in , and W is a smoothing kernel with as the width. The
width, or core radius, is a scaling factor that controls the smoothness or roughness
of the kernel. Section

r Ω h

3.2 concerns smoothing kernels.
 The numerical equivalent to (3.1) is obtained by approximating the integral
interpolant by a summation interpolant,

 , (3.2) () (,S j j
j

A AVW= −∑r r

8

Chapter 3. Smoothed Particle Hydrodynamics

where is iterated over all particles, j jV is the volume attributed implicitly to particle

, j jr the position, and jA is the value of any quantity A at jr . Compared to (3.1)
the volume for each iterated particle is added to (3.2), which can be justified when

jA is assumed sufficient constant on jV . The following relation between volume,
mass, and mass-density applies

 mV
ρ

= , (3.3)

where is the mass and the mass-density. Substituting the volume for particle
in

m ρ j

(3.2) with (3.3) yields the basis formulation of the SPH method, which can be
used to approximate any continuous quantity field, and be evaluated everywhere in
the underlying space,

 () (,j
S j

jj

m
A A W

ρ
= −∑r r)j hr . (3.4)

 In SPH a differentiable interpolant of a function can be constructed from its
values at the particles by using a differentiable kernel, and thus derivatives of an
interpolant can be obtained by standard analytic differentiation. It is therefore a
straight forward procedure to define the gradient and the Laplacian of a quantity
field, under the assumption that the smoothing kernel is first and second order
differentiable, respectively. Considering a system of two particles, i and , the
partial derivative on

j
(3.4) for the -component becomes x

 () (,j
S i j i j

j

m
A A W
x x ρ

⎛ ⎞⎟∂ ∂ ⎜ ⎟= −⎜ ⎟⎜ ⎟∂ ∂ ⎜⎝ ⎠
r r)hr . (3.5)

Using the product rule on (3.5) yields

() () ()

() ()

()

, ,

0 , ,

, ,

j j j
j i j j i j j i j
j j j

j
i j j i j

j

j
j i j
j

m m m
A W h A W h A W h

x x x

m
W h A W h

x

m
A W h

x

ρ ρ ρ

ρ

ρ

⎛ ⎞ ⎛ ⎞⎟ ⎟∂ ∂ ∂⎜ ⎜⎟ ⎟− = − + −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟∂ ∂ ∂⎜ ⎜⎝ ⎠ ⎝ ⎠

∂= ⋅ − + −
∂

∂= −
∂

r r r r r r

r r r r

r r

,

 (3.6)

where we have used the fact that j
j
j

m
A

ρ
 at this point does not directly depends on

the -component, and neither on any other component of space, and hence the
product can be considered a constant.

x

9

Chapter 3. Smoothed Particle Hydrodynamics

 Knowing that the derivatives of a summation interpolant only affect the
smoothing kernel, the gradient of the smoothed quantity field (3.4) becomes

 () (,j
S j

jj

m
A A W

ρ
∇ = ∇ −∑r)j hr r

ρ

. (3.7)

To obtain higher accuracy on the gradient of a quantity field, the interpolant can
instead be obtained by using

()A A Aρ ρ∇ = ∇ − ∇

()(1A A Aρρ∇ = ∇ − ∇)ρ , (3.8)

which is an example of the use of the so called second golden rule of SPH, which
states that it is better to rewrite formulae with the density placed inside the
operators [21]. The first golden rule of SPH is regarding kernels and presented in
Section 3.2. The SPH expression for (3.8), using (3.7) on the gradient terms, yields

() () ()

() ()

() ()

1 , ,

1 ,

1 , .

j j
S j j j j j

j jj j

j j j j j
j j

j j j

,

j

m m
A A W h A W

Am W h Am W h

A A m W h

ρ ρ
ρ ρ ρ

ρ

ρ

⎛ ⎞⎟⎜ ⎟⎜∇ = ∇ − − ∇ − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞⎟⎜ ⎟⎜= ∇ − − ∇ − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

− ∇ −

∑ ∑

∑ ∑

∑

r r r

r r r r

r r

hr r

 (3.9)

 A particular symmetrized form of (3.8) can be obtained be rewriting A
ρ

∇

according to

() 2

A A A ρρ ρ ρ
∇ = ∇ + ∇

 () 2
A AA ρ ρ ρ

⎛ ⎞⎟⎜ ⎟∇ = ∇ + ∇⎜ ⎟⎜ ⎟⎜⎝ ⎠
ρ , (3.10)

which in SPH terms becomes

10

Chapter 3. Smoothed Particle Hydrodynamics

() () ()

() ()

()

2

2 2

2 2

, ,

,

, .

j j j
S j jj j j

j j

j
j j j j

jj j

j
j j

jj

A m mAA W h W

A Am W h m W h

A A m W h

ρ ρρ ρ ρρ

ρ
ρ ρ

ρ
ρ ρ

⎛ ⎞⎟⎜ ⎟⎜∇ = ∇ − + ∇ − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞⎟⎜ ⎟⎜= ∇ − + ∇ − ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞⎟⎜ ⎟⎜= + ∇ −⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑ ∑

∑ ∑

∑

r r r

r r r r

r r

,

j hr r

 (3.11)

 The Laplacian of the smoothed quantity field (3.4) can be derived using the
same method as with the gradient, and it becomes

 () (2 2 ,j
S j

jj

m
A A W

ρ
∇ = ∇ −∑r)j hr r

1

. (3.12)

3.2 Smoothing Kernels

The use of different kernels in SPH is analogue to using different difference
schemes in finite difference methods, thus the choice of smoothing kernel for a
specific problem is of significant importance. The derivatives of the smoothing
kernels have an important impact for different SPH estimations, but we will now
focus on the kernels and their required properties.
 In [21] it is required that a suitable kernel must have the following two
properties,

 (),W h d
Ω

=∫ r r (3.13)

and

 , (3.14) () ()
0

lim ,
h
W h δ

→
=r r

where is Dirac’s delta function δ

 ()
0

0 otherwiseδ
∞ =⎧⎪⎪= ⎨⎪⎪⎩

r
r . (3.15)

Equation (3.13) states that the kernel must be normalized, and that the unit
integral ensures that maxima and minima are not enhanced. The kernel must also
be positive

 (),W h ≥r 0 , (3.16)

11

Chapter 3. Smoothed Particle Hydrodynamics

to ensure that it is an averaging function [7]. If the kernel is even,

 , (3.17) () (,W h W h= −r),r

then rotational symmetry is enforced, which is useful to ensure invariance under
rotations of the coordinate system. If (3.17) and (3.13) are both obtained, i.e. the
kernel are even and normalized, then the interpolation is of second order accuracy
[21], that is the error of approximating (3.1) by (3.4) is or better. In [()2O h 21] it is

also suggested that a suitable kernel should have a limited or compact support
radius, in order to ensure zero kernel interactions outside the computational range
of the radius. We use the kernel width h as the compact support radius for all
smoothing kernels, which implies (), 0, h= >r rW h .

 The first golden rule of SPH states that if a new interpretation of an SPH equation
is to be found, it is always best to assume the kernel is a Gaussian [21]. The
isotropic Gaussian kernel in n dimensions is given by

 ()
()

()22 2
3

2 2

1,
2

h
gaussianW h e h

hπ

−
=

r
r , 0> , (3.18)

and it is depicted on Figure 3.1 in one dimension for . 1h =

Figure 3.1 The isotropic Gaussian kernel in 1D, for . 1h =

Even though a Gaussian kernel has very nice mathematically properties, it is not
always the best kernel to use, e.g. it does not have a compact support for our
purpose, and it requires the evaluation of the expensive exponential function.
 In the next chapter we will focus more intensively at the specific smoothing
kernels that are needed for the different purposes within Lagrangian fluid dynamics
using smoothed particle hydrodynamics.

12

Chapter 3. Smoothed Particle Hydrodynamics

3.3 Summery

In this chapter the following important topics are covered/achieved:

• Smoothed particle hydrodynamics is an interpolation method that can
approximate continuously field quantities and their derivatives by using
discrete sample points, called smoothed particles.

• Particles carry mass, m , position, , and velocity, u , but can also hold SPH
estimated quantities, e.g. mass-density, , pressure, , etc.

r
ρ p

• The following relation between volume, mass, and mass-density applies, and
can be used to determined the volume occupied by a particle,

 mV
ρ

= .

• The following properties must hold for a smoothing kernel,

 (),W h d
Ω

= 1∫ r r (normalized),

 (),W h ≥r 0

),r

 (positive),

 (even). () (,W h W h= −r

• We only use smoothing kernels with a compact support radius h , which
implies (), 0,W h h= >r r .

• The basis formulation of SPH to approximate any quantity field and their
derivatives yields

 () (),j
S j

jj

m
A A W

ρ
= −∑r r j hr ,

 () (),j
S j

jj

m
A A W

ρ
∇ = ∇ −∑r r j hr ,

 () ()2 2 ,j
S j

jj

m
A A W

ρ
∇ = ∇ −∑r r j hr .

• A symmetrized gradient of a higher accuracy can in SPH be obtained by

 () ()2 2 ,j
S j

jj

A AA m Wρ
ρ ρ

⎛ ⎞⎟⎜ ⎟⎜∇ = + ∇ −⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑r r j hr .

• SPH is originally designed for compressible flow problems.

13

4 Lagrangian Fluid Dynamics

The equations (2.1) and (2.2) represent the basic Eulerian formulation of an
incompressible, isothermal fluid. Using particles instead of a grid simplifies the
equations significantly. We assume that the amount of particles is constant during
the simulation, and by keeping the mass fixed for each particle, it implies that mass
conservation is guaranteed, and that (2.2) can be omitted. Figure 4.1 depicts a
basic layout of a particle-based fluid, which has been reduced to two-dimensions for
reasons of clarity. In the Lagrangian formulation of a fluid the particles completely
define the fluid, which implies that the particles move with the fluid. Compared to
the Eulerian view this means that any field quantity now depends on time, t , only.
The particles carry mass, position, and velocity, and will hold smoothed quantity
approximations obtained from SPH. The acceleration for a Lagrangian fluid particle

becomes the ordinary time derivative ddt of its velocity . This expounds why the

advection term of

()tu

(2.1) is not present in the Lagrangian view. The basic Lagrangian
formulation of the Navier-Stokes equations for an incompressible, isothermal fluid
is given by

 2d p
dt

ρ μ= −∇ + ∇ +u u f . (4.1)

Figure 4.1 Lagrange particle-based fluid structure in 2D. The particles are represented by the dots.

The circles represent the volume of each particle.

 The right hand side of (4.1) consists of internal and external force fields. The
force fields can be combined into a sum of force fields, . For
particle the acceleration then becomes

internal external= +F f f
i

 i
i

i

d
dt ρ

= =u Fa i , (4.2)

14

Chapter 4. Lagrangian Fluid Dynamics

where and are the acceleration and velocity of particle i , respectively, is
the total force acting the particle, and is the mass-density evaluated at the
position of particle .

ia iu iF

iρ
i

Figure 4.2 The default kernel and its derivatives in one dimension for . For optimal visibility the

graphs are scaled differently.
1h =

 In Section 3.2 we learned about the first golden rule of SPH, but we also
concluded that the isotropic Gaussian kernel was not fit to be used for our purpose.
We need a default smoothing kernel with compact support for the interparticle-
based SPH computations required to solve for (4.1). In [12] several kernels for SPH
in stable fields are discussed, and among the kernels with compact support are the
B-Spline and Q-Spline kernels, where the Q-Spline is concluded to be the best kernel

15

Chapter 4. Lagrangian Fluid Dynamics

in terms of computational accuracy. However, the Q-Spline kernel requires the
evaluation of the square root, which can be expensive if the kernel is often used.
Instead we will use the 6th degree polynomial kernel suggested by [23] as our
default kernel, which is given by

 ()
()32 2

9

0315,
64 0

default

h h
W h

h hπ

⎧⎪ − ≤⎪⎪= ⎨⎪⎪ >⎪⎩

r r
r

r ,

≤
 (4.3)

with the gradient

 () (22 2
9

945,
32defaultW h h
hπ

∇ = − −r r)r , (4.4)

and the Laplacian

 () ()(2 2 2
9

945,
32defaultW h h h
hπ

∇ = − − −r r)2 23 7 r . (4.5)

 Noticeable qualities for the default kernel are that it preserves the Gaussian bell
curve and the norm of can be omitted completely, thus making it computational
pleasing.

r
Figure 4.2 depicts the default kernel and its derivatives in one dimension.

The default kernel and its derivatives are used for all smoothed quantity field
approximations, except for the internal fluid force fields, see Section 4.2.

4.1 Mass-Density

In Section 3.1 we saw that any continuous quantity field, their gradients, or
Laplacians can be approximated by using the SPH formulations (3.4), (3.7), or
(3.12), respectively. The equations assume that particle masses and mass-densities
for all particles are known prior to applying SPH. The particle mass is a user defined
constant, but the mass-density is a continuous field of the fluid, which must be
computed. To avoid any contradiction, the mass-density is the one field that alone
only depends on the particle mass, and for this specific case we can use (3.4) to
compute the field. At particle i the mass-density thus yields

()

(

()

,

, .

i i

j
j i j
jj

j i j
j

m
W

mW h

ρ ρ

ρ
ρ

=

= −

= −

∑

∑

r

r r

r r

)h (4.6)

16

Chapter 4. Lagrangian Fluid Dynamics

4.2 Internal Forces

Internal force densities are force contributions that only arise from within the fluid,
and in (4.1) they are the pressure and viscosity force density fields, which are the
first and second term on the right hand side, respectively. The internal fluid force
densities all require applying SPH to compute the derivatives of the quantity fields.

4.2.1 Pressure

The pressure at a particle can be determined using the ideal gas law, which
states

p

 , (4.7) pV nRT=

where 1V
ρ

= is the volume per unit mass, n is the number of gas particles in mol,

 is the universal gas constant, and T is the temperature. For an isothermal fluid
with a constant mass the right hand side of
R

(4.7) can be kept constant, and hence
we replace it by a gas stiffness constant k , which theoretically only depends on the
amount of particles in the fluid. The pressure term can then be written as

 1
pV k

p kρ

=

=

 . (4.8) p kρ=

 If the pressure is known at each particle, the pressure force at particle i , in SPH
notation, yields

()

(), .

pressure
ii

j
j i j
jj i

p

m
p W h

ρ≠

= −∇

= − ∇ −∑

f r

r r
 (4.9)

 Unfortunately, the pressure force in (4.9) is not symmetrical. This can be verified
when only two particles interact, as the first particle only uses the pressure at the
second particle to compute its pressure force, and vice versa. Because the
pressures at the particles are not equal in general the pressure force will be
asymmetric, and the action-reaction law will not be conserved. The SPH formalism
has a way of symmetrizing the pressure force. This is complied by employing (3.11)
for , which yields ()ip−∇ r

 (2 2 , .jpressure i
i j ii

i jj i

pp
m W hρ

ρ ρ≠

⎛ ⎞⎟⎜ ⎟⎜= − + ∇ −⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑f)jr r (4.10)

17

Chapter 4. Lagrangian Fluid Dynamics

Other solutions to symmetrize asymmetric forces exist. In [23] a simple solution is
provided that best suits their purposes of speed and stability,

 (,
2

i j jpressure
i ji

jj i

p p m
W

ρ≠

+
= − ∇∑f)h−r r , (4.11)

which is symmetric due to it uses the standard arithmetic mean of the pressures of
the interacting particles. A symmetrical pressure force has the qualities that linear
and angular momentum are conserved, and hence Newton’s 3rd law.

a) Balanced mass-density in the marked region, hence no produced pressure forces.

b) High mass-density in the marked region will produce repulsive pressure forces.

c) Low mass-density in the marked region will produce attractive pressure forces.

Figure 4.3 Pressure force behavior from different mass-densities.

 Computing the pressure using (4.8) and using the result in the calculation of the
pressure force, results in purely repulsive forces between particles, which is true for
an ideal gas that tends to expand in space. In contrast, liquids should exhibit

18

Chapter 4. Lagrangian Fluid Dynamics

internal cohesion and have a constant mass-density at rest. In [5] Desbrun et al.
suggest using a modified version of the ideal gas state equation, with an additional
rest pressure , which is 0p

 , (4.12)

()0
0

p p V k
kp k ρρ

+ =
=+

(0p k ρ ρ= −)

where is the rest density of the fluid. Using 0ρ (4.12) as the pressure term for the
pressure force (4.10) results in an attraction-repulsion force that will be minimized
as the density approaches the rest density. Figure 4.3 illustrates the behaviors
produced by the pressure force from different mass-densities.
 The gradient from the pressure field is used in the calculation of the pressure
force. If the gradient of the default kernel (4.4) is used as the choice of smoothing
kernel in (4.10), particle clustering will arise in high pressure regions. Particles will
build clusters due to as (),defaultW h∇ →r 0 0→r , verifiable on Figure 4.2, which
implies that repulsion forces get more attenuated as particles approach each other.
We are not interested in clustering caused by an unreliable model of the pressure
force. If particle clusters are needed we are interested in an explicit and precise
physical description of such a behavior. We need another smoothing kernel for the
pressure force. Desbrun et al. became acquainted with the same problem in [5],
and proposed another normalized kernel, which later was adopted in [23]. For the
evaluations of the pressure force between particles, we employ the spiky kernel
from [23] as our pressure kernel, which yields,

 ()
()3

6

015,
0 ,

pressure

h h
W h

h hπ

⎧⎪ − ≤⎪⎪= ⎨⎪ >⎪⎪⎩

r r
r

r

≤
 (4.13)

with the gradient

() ()

() ()

2
6

6 60 0

45, ,

45 45lim , , lim , ,

pressure

pressure pressurer r

W h h
h

W r h W r h
h h

π

π π− +→ →

∇ = − −

∇ = ∇ = −

rr r
r

 (4.14)

and the Laplacian

() ()()

()

2
6

2

0

90 1, 2

lim , ,

pressure

pressure
r

W h h h
h

W r h

π

→

∇ = − − −

∇ = −∞

r r
r

,r

 (4.15)

19

Chapter 4. Lagrangian Fluid Dynamics

where we have written the limits for one dimension only. Figure 4.4 depicts the
pressure kernel and its derivatives in one dimension. Observe that

() 6
45,pressureW r h
hπ

∇ → − as , which will model the required repulsion force

when adjacent particles become too dense.

0r +→

Figure 4.4 The pressure kernel and its derivatives for smoothing radius . For optimal visibility

the graphs are scaled differently.
1h =

4.2.2 Viscosity
A fluid is a substance that cannot resist shear stress and consequently will flow
upon deformation. At the same time when the fluid flows, the molecules undergo
internal friction that will decrease its kinetic energy by converting it into heat. The

20

Chapter 4. Lagrangian Fluid Dynamics

resistance to flow is called viscosity, and the viscosity coefficient, , defines the
strength of how viscous the fluid is. The SPH variant to the viscosity force term
yields

μ

()

()

2

2 , .

viscosity
ii

j
j i j
jj i

m
W h

μ

μ
ρ≠

= ∇

= ∇ −∑

f u r

u r r
 (4.16)

Figure 4.5 The viscosity kernel and its derivatives in one dimension for smoothing length . For

optimal visibility the graphs are scaled differently.
1h =

21

Chapter 4. Lagrangian Fluid Dynamics

 Like the pressure force in (4.9) the viscosity force in (4.16) is also asymmetric
due to the velocity varies from particle to particle. To counteract this issue Müller et
al. in [23] have chosen to symmetrize the velocity fields using

 () (2 ,jviscosity
j i i ji

jj i

m
Wμ

ρ≠
= − ∇ −∑f u u r)hr , (4.17)

which is possible due to the fact that viscosity forces only depend on velocity
differences and not on absolute velocities. To justify (4.17) we can employ the
second golden rule of SPH that is, to write the viscosity term with the density placed
inside the Laplacian operator,

 ()(2 2μμ ρρ∇ = ∇ − ∇u u u)2ρ , (4.18)

which in SPH formulation, using the structure of (3.9), becomes

 () (2 , .viscosity
j i j i ji

i j
m W hμ

ρ
= − ∇ −∑f u u r)r

0

 (4.19)

Equation (4.17) can be written as (4.19) under the assumption that the mass-
density is constant and identical at all particles. The mass-density is computed
using (4.6), thus it generally varies from particle to particle, and consequently why
(4.17) seems more correct to use than (4.19).
 The Laplacian of the smoothing kernel in (4.17) is constrained to be positive.
This is required because we do not want the forces due to viscosity to increase the
relative velocity, and thereby introduce energy and instability into the system. If the
Laplacian is positive everywhere only then will the viscosity force work as a damping
term, and damp the relative velocity. The standard kernel does not have this
property and neither does the pressure kernel, as can be verified on Figure 4.4,
thus we need a smoothing kernel with for ()2 ,W h∇ ≥r h≤r . We employ the
viscosity kernel proposed by [23], which yields

()

()

3 2

3 2
3

0

1 015 22,
2 0 ,

lim , ,

viscosity

viscosity
r

h h
h hW h

h h

W r h

π

→

⎧⎪− + + − < ≤⎪⎪⎪= ⎨⎪⎪ >⎪⎪⎩

= ∞

r r r
rr

r
 (4.20)

with the gradient

22

Chapter 4. Lagrangian Fluid Dynamics

()

() ()

3 3 2 3

0 0

315 2, ,
22 2

lim , , lim , ,

viscosity

viscosity viscosity
r r

hW h
h h h

W r h W r h

π

− +→ →

⎛ ⎞⎟⎜∇ = − + − ⎟⎜ ⎟⎜⎝ ⎠

∇ = +∞ ∇ = −∞

rr r
r

 (4.21)

and the Laplacian

 () (2
6
45,viscosityW h h
hπ

∇ = −r)r

f

g

)g

, (4.22)

where we have written the limits for one dimension only. Figure 4.5 depicts the
viscosity kernel and its derivatives in one dimension for smoothing radius . 1h =

4.3 External Forces

External force densities are balanced against the internal force densities. In (4.1)
the external force density field is the last term on the right hand side, which can be
combined into a sum of force densities,

 , (4.23) external n

n
= ∑f

where indicates each individual external force density. Some external force
contributions can be applied directly to the particles without the use of SPH, while
others still depend on adjacent particles. Collision handling, which also can be
considered as an external force contribution, is covered in Section

n

4.4.

4.3.1 Gravity
The gravitational force density field is acting equally on all fluid particles, and is
given by

 , (4.24) gravity
ii ρ=f

where is the downward gravitational acceleration. g

4.3.2 Buoyancy
For gaseous fluids we want the particles to buoyant. Buoyancy is caused by
diffusion of temperatures, but as we are modeling an isothermal fluid, an artificial
buoyancy force density can be employed as

 , (4.25) (0
buoyancy

ii b ρ ρ= −f

23

Chapter 4. Lagrangian Fluid Dynamics

where is the artificial buoyancy diffusion coefficient. The buoyancy force will
make particles buoyant if the mass-density has become smaller than the desired
rest density. For a gas we will only employ the buoyancy force in preference to
gravity.

0b >

4.3.3 Surface Tension
The surface tension force is an external force density that can be applied to the free
surface of a liquid fluid. It is normally not a part of the Navier-Stokes equations, due
to it is considered a boundary condition. For a Lagrangian fluid the boundaries can
be identified by the particles. Fluid molecules are influenced by attractive forces
from adjacent molecules, and these forces are kept in perfect balance inside the
fluid. On the fluid surface the forces are unbalanced and cause surface tensions.
The surface tension forces act in the direction of the inward surface normals
towards the fluid, where they bind the fluid surface together. The surface tension
force will flatten the surface curvature by minimizing the surface area. Figure 4.6
depicts the behavior of the surface tension force.

a) b)

c)
Figure 4.6 Behavior of the surface tension force. Inward surface normals, n , point from the particles

towards the fluid. Surface tension forces, f , end at the particles. a) The surface tension force acts
with the same strength on a spherical shape. b) The strengths of the surface tension forces depend

on the curvature. c) A positive curvature (left) generates a stronger surface tension force than a
negative curvature (right), but the surface tension force will in all cases work in the direction towards

the fluid.

 The surface tension force we employ is explicitly based on the surface tension
model from [23], which yields

24

Chapter 4. Lagrangian Fluid Dynamics

 2surface i
ii

i
cσ= − ∇ nf
n

, (4.26)

where is the inward surface normal of the fluid at particle i , is the smoothed
value of the color field evaluated at particle i , and σ is the tension coefficient that
depends on the fluids that form the surface, e.g. water and air.

in ic

 The color field is an additional field quantity with exactly at particle
locations and everywhere else. In SPH formulation the smoothed color field at
particle is

c 1c =
0c =

i

()

()

()

,

, .

i i

j
j i jj

j

j
i jj

j

c c

m
c W h

m
W h

ρ

ρ

=

= −

= −

∑

∑

r

r r

r r

 (4.27)

 The gradient of the smoothed color field yields the inward surface normal of the
fluid,

()

(), ,

i i

j
i j

jj

c

m
W h

ρ

= ∇

= ∇ −∑

n r

r r
 (4.28)

where 0i >n only near and on the surface of the fluid. The divergence of n
measures the Gaussian curvature of the surface,

2cκ ∇ ∇= − = −n

n n
, (4.29)

where the negation is necessary to get a positive curvature for convex fluid
volumes.
 The surface traction, or external traction as opposed to internal traction that
concerns stress fields, is force per unit area acting on a given location on the fluid’s
surface. In [23] the surface traction is defined as

 σκ= nt
n

, (4.30)

and it should only be distributed to particles near and on the surface. As in gets
smaller when particle i is away from the surface, we can multiply the surface

25

Chapter 4. Lagrangian Fluid Dynamics

traction by a normalized scalar field iδ = ni . This will make sure that the force
density is spread onto all potential particles, and ultimately results in the surface
tension force,

 2surface i
i i i i ii

i
cδ σκ σ= = = − ∇ nf t n
n

. (4.31)

 The surface tension force only applies to particles located near or on the liquid
surface. This constraint is determined numerically as nn becomes numerical

unstable when 0→n . One way to prevent numerical problems when evaluating
(4.31) for particle , is to compute only when i surface

if

 i ≥n , (4.32)

where is some threshold relating to the particle concentration. 0>

 The surface tension force is asymmetric by design. In the real world surface
tension forces are the consequence of fluid-fluid interactions, e.g. between water
and air molecules. We only model a tiny fraction of the real world, and do not have
any air particles to symmetrize the surface tension force, thus the model might be in
absence of some realism.

4.3.4 User Interaction
A part of the definition of interactive simulation states that an end user should be
able to interact with the fluids. This can be realized by controlling the different
internally and externally physical properties of the fluids during the simulation, e.g.
the viscosity strengths, the rest densities, and the gravity. Very often interactivity is
introduced by letting the end user control the transformation of collision containers
and obstacles, and thus implicitly affect the fluids by having an effect on the
environment, e.g. throwing rigid items into a fluid, or moving around a glass of
water. External force density fields can also be introduced and removed dynamically
at runtime to model environmental effects, e.g. a rotational swirl or a blowing wind.

4.4 Collision Handling

The small-scale working domain of interactive Lagrangian fluids is limited. A
practical way of meeting a convincing environment of the fluid is to constraint the
particle system within well defined boundaries. Boundary containers, such as boxes,
spheres, and capsules, are commonly used to constraint a fluid. When particles
collide with a container they must stay inside its boundaries. Likewise, if particles
collide with an obstacle, they may not penetrate or gain access to the interior of the
object.

26

Chapter 4. Lagrangian Fluid Dynamics

 Collision handling can be divided into two sub parts; collision detection and
collision response. In this section collision detection between fluid particles and
their surroundings will be treated. For the fluid’s point of view all obstacles and
containers are assumed to be fixed and rigid, hence only collision responses to fluid
particles will be considered. In the real world when a fluid collides with its
surroundings, it also inflicts a reaction. This is in agreement with Newton’s 3rd law,
and should be considered in the case that obstacles can be moved freely according
to rigid body mechanics, or the surroundings are deformable.
 Containers and obstacles can be represented geometrically or analytically. For
the geometrical representation tetrahedra meshes are often applied, as any
arbitrary model can be handled alike. The analytical representation is often
restricted to standard implicit primitives, as one such primitive can be described by
a single mathematical equation that only has a small computational cost. We want
to concentrate on finding a good collision handling method for Lagrangian fluids. To
omit unnecessary challenges that can arise from the tetrahedra meshes, we will
use implicit primitives as the collision handling prototype. Once a stable collision
handling has been achieved for implicit primitives, it should be possible to extend
the collision objects to tetrahedra meshes. In Section 4.4.4 we will discuss some of
the considerations that are necessary for the collision detection of tetrahedra
meshes.

4.4.1 Collision Detection
Particles carry position and velocity, which are enough to determine any collision. If
the current particle position does not provide enough information to secure a valid
impact, the velocity can be used to trace the particle back to its previous position. A
generic collision detection system must detect impacts and penetrations, and
collect enough information on the collisions to handle collision responses
satisfactory. Mandatory information from a collision includes:

• Contact point / Point of impact on the surface, . cp

• Penetration depth through the obstacle, d .

• Surface normal at the contact point, . n

 A contact point is where a penetration between a particle and an object has
occurred, i.e. the point of impact. The distance the particle has traveled inside the
collision obstacle, or outside the collision container, is the penetration depth. The
surface normal is a vector at the contact point with direction away from the object.
For the rest of this section we will assume the surface normal is the unit vector.
 We only consider collisions where the penetration depth is positive, , hence
if a particle is located on the surface of an object, it is not colliding. For an implicit
primitive it is a straight forward procedure to determine if a particle has penetrated
the surface, see next Subsection

0d >

4.4.2. However, it is not always straight forward to
determine the actual contact point. Consider Figure 4.7, which illustrates a 2D
version of a typical problem regarding the collision determination between a particle

27

Chapter 4. Lagrangian Fluid Dynamics

and an implicit primitive. The correct contact point is , with penetration depth ,
and contact normal , but finding is normally not cheap, as it includes line
intersection checks against the implicit primitives. The discussions in Subsection

1cp 1d

1n 1cp

4.4.4 address the similar problem for tetrahedra meshes. However, the contact
point and its accompanying information are easily retrieved for implicit
primitives. In practice, using contact point instead of is of no significant
importance. We will argue that the situation illustrated on

2cp

2cp 1cp
Figure 4.7 only occurs if

we are using a large integration time step, or very small collision objects. See
Section 4.5 and Subsection 5.3.3 regarding the time integration and the time step,
respectively. Often the difference between the correct contact point and the
approximating contact point is very small, and the collision response to will
most likely advance the particle towards at a later time.

1cp

2cp 1cp

2cp

Figure 4.7 Two possible collision determinations from the same particle position update.

4.4.2 Implicit Primitives
Implicit primitives are easy to work with and provide a great deal of information with
little computational cost. Verifying particle penetrations against implicit primitives
only require the current particle positions. An implicit given two-manifold is
described by a function , for which the surface is determined implicitly by

. For the rest of this section we will assume the implicit two-

manifolds are closed, i.e. they can be considered as “watertight” solids, with the
following conversions,

3:F →

}0(){ 3 |F∈ =x x

 is inside the primitive, () 0F <x x

 is on the surface, (4.33) () 0F =x x

 x is outside the primitive. () 0F >x

 We are using three types of implicit primitives; spheres, capsules, and boxes.
Definitions of the primitives and details on how to compute the mandatory collision
information are discussed in the following. We are making use of the signum
function, which returns the sign of a real number. The signum function is defined by

28

Chapter 4. Lagrangian Fluid Dynamics

 . (4.34) ()

1 0

sgn 0 0

1 0

x

x x

x

⎧⎪− <⎪⎪⎪⎪⎪= ⎨⎪⎪⎪⎪ >⎪⎪⎩

=

4.4.2.1 Spheres
Intersection tests between a sphere and other primitives can be performed very
efficiently, thus a sphere is a very common bounding volume and collision primitive
in Computer Graphics. A sphere is defined implicitly by

 () 22
sphereF = − −x x c r , (4.35)

where and r are the center and radius of the sphere, respectively. c

 A sphere can be used as either a container or as an obstacle. If a collision has
occurred, the contact point is

 sphere r −= + −
x ccp c x c , (4.36)

the penetration depth is

 sphered = − −c x r , (4.37)

and the unit surface normal is

 ()()sgnsphere sphereF −= −
c xn x c x . (4.38)

4.4.2.2 Capsules
A capsule is a very flexible collision object, and it is used throughout the graphics
industry, e.g. to represent various limbs for ragdolls in computer games.
Geometrically it can be constructed from a cylinder and two hemispheres, see
Figure 4.8.
 Implicit primitives can be combined to form more complex types. Constructive
solid geometry (CSG) for implicit functions is a simple operation of taking the
minima of all individual implicit primitives, e.g.

 , (4.39) () () () (){ 1min , ,capsule sphere cylinder sphereF F F F=x x x }2 x

29

Chapter 4. Lagrangian Fluid Dynamics

but a capsule can be described implicitly even more beautifully. The idea is to
ignore the geometrically primitives and think of a capsule as a fixed distance from a
line segment, see Figure 4.9 for the 2D equivalent.

Figure 4.8 A capsule in wireframe (upper) and in solid (lower).

Figure 4.9 A capsule defined by the two end points and , and a radius r . 0p 1p

 If a capsule is defined by two end points and , and a radius r , we define
the implicit function as

0p 1p

 ()capsuleF = − −x q x r , (4.40)

where

() () (0 1 0

0 12
1 0

min 1,max 0,
⎛ ⎞⎛ ⎞⎛ ⎞ ⎟− ⋅ −⎜ ⎜ ⎜ ⎟⎟⎜ ⎟⎜ ⎜ ⎟= + − ⎟⎟⎜ ⎜ ⎜ ⎟⎟⎟⎜ ⎜ ⎟⎜ ⎟⎟⎜⎜ ⎟−⎜ ⎟⎜ ⎝ ⎠⎝ ⎠⎝ ⎠

p x p p
q p p p

p p
)0

⎟⎟ −

≤

)

. (4.41)

Going into details on (4.41), is a point on the line segment from to , ()t=q l 0p 1p

 . (4.42) () ()0 1 0 , 0 1t t t= + − ≤l p p p

The first task is to find t such that (is perpendicular to () , i.e. −q x 1 0−p p −q x is

the shortest distance from to () , x 1 0−p p

30

Chapter 4. Lagrangian Fluid Dynamics

() ()

()() ()

1 0

0 1 0 1

0

0 t

= − ⋅ −

= + − − ⋅ −

q x p p

p p p x p p0

 () ()0 1 0
2

1 0

t
− ⋅ −

= −
−

p x p p
p p

 (4.43)

Obtaining a value for t using (4.43) guarantees that is perpendicular to

, but is not guaranteed. To satisfy

()(t −l)x

t≤ ≤

)t

()1 0−p p 0 1 (4.42) t is clamped using

 , (4.44) ()(min 1,max 0,t =

and will now lie on the line segment () . q 1 0−p p

 Dependent on the capsule is used as a collision container or obstacle then
(4.33) can be used to determine whether a particle penetration has occurred. The
contact point is always

 capsule r −= +
−
x qcp q x q

, (4.45)

the penetration depth is

 ()capsule capsuled F= x , (4.46)

while the unit surface normal is

 ()()sgncapsule capsuleF −=
−
q xn x q x

. (4.47)

4.4.2.3 Boxes
An oriented bounding box (OBB) is not geometrically smooth like the sphere or
capsule, and cannot be defined as a continuous function. However, respecting the
conversions from (4.33), we describe an OBB implicitly by

 ()
maxbox localF ⎡ ⎤= −⎣ ⎦x x ext , (4.48)

where []max⋅ is the operator that returns the vector component with the largest value
and is the axis extends from the center of the OBB. is x expressed in body
frame (BF) and is defined as a standard transformation from a global to a local
frame,

ext localx

31

Chapter 4. Lagrangian Fluid Dynamics

 , (4.49) (Tlocal = −x R x)c

where and are the axis orientation and the center of the OBB, respectively, in
the world coordinate system (WCS).

R c

 A box can also be used as an obstacle and a container. We are only defining the
collision information when the implicit OBB is used as a container, but a similar
procedure can be generated for an OBB as an obstacle. When a particle with
position has penetrated the OBB, use x (4.49) to transform the point into . The
local contact point is computed by

localx

 []min ,max ,local local⎡ ⎤= −⎣ ⎦cp ext ext x , (4.50)

but we need the contact point in WCS, and transform it back using

 . (4.51) box local= +cp c R cp

The penetration depth is simply the length between the penetrating point and the
contact point,

 box boxd = −cp x , (4.52)

and the unit surface normal can be computed by

 []
[]

sgn
,

sgn
local local

box
local local

−
=

−
R cp x

n
R cp x

 (4.53)

where []sgn ⋅ is the vector signum operator, e.g. it returns a new vector using (4.34)
on each component.

4.4.3 Collision Response
The field of collision response focuses on how to handle the information retrieved
from the collision detection satisfactory. Several methods to respond to a collision
have been employed in Computer Graphics, some of which will be surveyed briefly
and categorized according to our own interpretation.
 Acceleration-based collision responses are due to applied external forces, such
as spring forces. In [22] spring forces with different spring constants are used to
control particles that approach collision obstacles. Penalty forces are exponential
spring forces that are applied to particles when they get too close to, or penetrate,
collision objects [35]. Collision objects are surrounded by continuous, potential
energy functions that generate repulsive forces, thus collision detection is implicitly

32

Chapter 4. Lagrangian Fluid Dynamics

applied in the energy potential. However, spring forces cannot always guarantee no
penetrations will occur, whereas penalty forces often react too violently, which
course instabilities. Our category for the acceleration-based collision responses
should not be confused by terms from rigid body dynamics.
 Impulse-based collision responses are event driven methods that can be
employed to avoid penetrations. An impulse is defined as the time integral of force,
and involves modifying the particle velocity at the exact time of collision. An
impulse-based collision response is often applied in rigid body dynamics [7].
 Collision responses by projections are easy ways to handle particle penetrations.
Particles are simply projected out from penetrated objects. A projection of a particle
can affect the energy conservation, as the projection can cause an increase in
potential energy that in time converts into kinetic energy.

4.4.3.1 Hybrid Impulse-Projection method
The method we employ to solve our fluid particle collisions is a standard explicit
project-and-reflect method. If particle i has penetrated an implicit primitive, its
position is modified by projecting the particle back onto the surface along the
surface normal , with a magnitude proportional to the penetration depth d ,

ir
n

 , (4.54) i i d= +r r n

p

n

n

1

which for an implicit primitive equals the contact point , cp

 . (4.55) i =r c

 The particle velocity is reflected in the surface normal using the standard
vector reflection method

iu

 , (4.56) ()2i i i= − ⋅u u u n

but this will result in a perfect elastic collision, i.e. the kinetic energy is conserved.
Generally, we believe that fluids do not bounce back upon collisions, thus we do not
want to only have elastic collisions. We need to control how much of the kinetic
energy that is conserved after a collision, and thus introducing the restitution into
(4.56), which yields

 , (4.57) ()()1i i R ic= − + ⋅u u u n

where is the coefficient of restitution. To cancel out the velocity in the
normal direction we set , which models the normally applied no-slip condition

0 Rc≤ ≤

0Rc =

33

Chapter 4. Lagrangian Fluid Dynamics

for a liquid, i.e. an inelastic collision, while models an elastic collision as in 1Rc =
(4.56).
 The position is projected back onto the collision surface, thus we seek to model
an impulse-based collision at the exact time the collision occurred. Dependent on
the magnitude of at the time of collision, equation Rc (4.57) can wrongfully increase
the particle’s kinetic energy. To constraint that the outgoing energy must never
exceed the incoming energy, we only want to reflect the velocity that was omitted in
the collision. Introducing the ratio of the penetration depth to the distance between
the last particle position and the penetrating position, yields

 ()1i i R i
i

dc
t

⎛ ⎞⎟⎜ ⎟= − + ⋅⎜ ⎟⎜ ⎟⎜ Δ⎝ ⎠
u u u n

u
n , (4.58)

where we have implicitly assume that a collision has occurred, i.e. 0i >u .

4.4.4 Discussion
Implicit primitives are great for collision prototyping, and provide a computationally
inexpensive solution for a variety of collision objects that are regularly used in
Computer Graphics. If more complex objects are required, implicit primitives can be
combined using CSG methods, but the complexity of the computations will rise
accordingly. Tetrahedra meshes are volumetrically by definition, and can be
employed as collision objects exactly alike, meaning there are no difference
between collision containers and obstacles. Figure 4.10 depicts an example of a
capsule shell mesh built from tetrahedra.

Figure 4.10 A capsule shell built from tetrahedra. The capsule is cut in half and the top has been

lifted to make the intrinsic hull visible.

 Generic collision detection for tetrahedra meshes includes a detection of points
being inside a tetrahedron. For this purpose we convert a point into Barycentric

34

Chapter 4. Lagrangian Fluid Dynamics

coordinates with respect to the tetrahedron. Please consult [(1 2 3 4, , , Tw w w w)

0

7] for
details on how to compute the Barycentric coordinates. The point lies inside the
tetrahedron if

and (4.59)

()

1 2 3 4

4 1 2 3

0 0 0

1 .

w w w w

w w w w

≥ ∧ ≥ ∧ ≥ ∧ ≥

≤ − + +

Please notice that if one, two, or three of the Barycentric coordinates are zero, the
point is located on a triangle, edge, or vertex, respectively, and thus cannot be
defined as being completely inside the tetrahedron. The small computational cost of
converting a point into Barycentric coordinates, to verify whether or not the point is
inside the tetrahedron, is well spent compared to the computations needed for
other inside checks, such as oriented half-space plane checks, etc.
 Once we have determined if a particle penetrates a tetrahedron, we further need
to determine the collision information listed in Subsection 4.4.1. To do this, the four
triangles from the tetrahedron are used. The Barycentric coordinates can also be
used to determine which triangle of the tetrahedron is the closest one to the
penetrating particle, but this does not guarantee in the correct collision information,
as the particle can be arbitrary close to any of the three wrong triangles. Instead, we
can use the particle velocity to find its previous position, and now find the correct
penetration triangle using line-triangle intersection tests, see Figure 4.11a) for a 2D
equivalent.

a) b)
Figure 4.11 Particle colliding against a triangle mesh. a) The penetrating edge from the penetration

triangle is used for the collision information. b) Only to consider the edges from the penetration
triangle is fatal, because the particle still will be penetrating the mesh after the collision response.

 One disadvantage of using point-tetrahedron collision checks is the possibility
that particles can jump right through tetrahedra without being detected, due to too
small tetrahedra or too large particle movement. Equivalently, neither can we be
sure that any triangle from the detected tetrahedron is the correct one to use for
the collision information determination, which can be verified on Figure 4.11b). To
only consider the triangles from the tetrahedron that the particle is penetrating, will
be fatal for the simulation, because the particle still will be penetrating the collision

35

Chapter 4. Lagrangian Fluid Dynamics

object after the collision response. The solution is to detect all tetrahedra and their
triangles penetrated by the particle trajectory. The triangle which is closest to the
previous particle position must always be used to compute the collision information.
 Tetrahedra and their vertices can be arranged into a spatial partition structure
for fast retrieval based on query points and lines, see Section 5.1 for an identical
method for efficiently retrieval of particle neighborhoods.

4.5 Numerical Time Integration

To simulate the fluid flow, each particle is advanced through time using a global
fixed time step . Equation tΔ (4.2) is employed to compute the particle acceleration,
and the new particle position is obtained from integrating the acceleration
numerically. In this section three different integration schemes will be described
briefly.

4.5.1 The Implicit Euler Scheme
The Implicit Euler scheme is actually a semi-implicit method, as it is only the
position update that is implicit. Semi-implicit Euler is based on the explicit Euler
scheme, which probably is the most common integration method. In explicit Euler
the position and velocity are updated in parallel,

 , (4.60) t t t tt+Δ = +Δr r u

a

 . (4.61) t t t tt+Δ = +Δu u

 The semi-implicit Euler is no longer independent of the position and velocity
updates. The velocity update is the same as (4.61), but the position update uses
the result from the velocity update to predict the new position,

 . (4.62) t t t t tt+Δ +Δ= +Δr r u

4.5.2 The Verlet Scheme
The Verlet integration method [37] originates from molecular dynamics, and is
based on implicit Euler. The variant presented in this subsection is based upon [15].
The current velocity can be estimated using the forward first-order difference
operator on positions given by

 t t t
t t

−Δ−≈ Δ
r ru . (4.63)

Inserting (4.61) into (4.62), and using (4.63) as the current velocity, the new
position can be determined as

36

Chapter 4. Lagrangian Fluid Dynamics

()

()(
22 .

t t t t t

t t t
t

t t t t

t t

t t

t

+Δ

−Δ

−Δ

= +Δ +Δ

−= +Δ +ΔΔ

= − +Δ

r r u a

r rr

r r a

)tta

ta

 (4.64)

 The Verlet scheme is one of the computationally fastest integrators and it is
usually very stable, as the velocity is given implicitly and will not get out of sync with
the position. However, collision responses are not trivial to handle, as it includes
modifying positions rather than velocities.

4.5.3 The Leap-Frog Scheme
The leap-frog integration [6] has got its name from the fact that the velocities leap
over the positions, and vice versa. Figure 4.12 illustrates the concept. The
integration structure is implicit Euler and yields

 , (4.65) ½ ½t t t t t+ Δ − Δ= +Δu u

 , (4.66) ½t t t t tt+Δ + Δ= +Δr r u

with the initial velocity offset given by an Euler step,

 ½ 0
1
2t t− Δ = − Δu u 0a . (4.67)

Figure 4.12 The leap-frog mechanism. The horizontal line represents time t , and the subscripts on

the positions and velocities u indicate the specific time. r

 The velocity at time t can be estimated by a simple midpoint approximation,

 ½ ½
2

t t t
t

− Δ + Δ+
≈
u u

u t . (4.68)

which is required when computing forces at time t .

37

Chapter 4. Lagrangian Fluid Dynamics

4.5.4 Discussion
In theory, a time integration scheme will follow Newton’s 1st law, but numerical
dissipation can reluctantly damp the linear motion of the particles. Typically, this is
not a problem in physics-based animation, because the damping can be explained
as a small scale air resistance or friction. Especially the Verlet scheme is easily
influenced by numerical damping. We have chosen not to introduce any explicit
damping in the time integrators, due to the different ways integrators handle
damping. We rely on the viscosity force to provide the necessary numerical
damping.

4.6 Summery

In this chapter the following important topics are covered/achieved:

• Table 4.1 sums up the different densities, including all force densities and
their expressions.

• The Navier-Stokes equations for an incompressible, isothermal Lagrangian
fluid yields

 2d p
dt

ρ μ= −∇ + ∇ +u u f .

• The acceleration of a particle, where F is the sum of internal and external
force densities, becomes

 d
dt ρ

= =u Fa .

• Particles are advanced through time by integrating the accelerations
numerically using an integrator, such as the leap-frog method,

 , ½ ½t t t t t+ Δ − Δ= +Δu u ta

 , ½t t t t tt+Δ + Δ= +Δr r u

 where the velocity offset is given by

 ½ 0
1
2t t− Δ = − Δu u 0a ,

 and the velocity at time t can be estimated by

 ½ ½
2

t t t
t

− Δ + Δ+
≈
u u

u t

p

.

• Implicit primitives are used as collision containers and obstacles, such as
spheres and capsules, and allow for fast computations of contact points cp ,
penetration depths d , and surface normals n .

• A hybrid impulse-projection collision response method is applied to
penetrating particles,

 , i =r c

 ()1i i R i
i

dc
t

⎛ ⎞⎟⎜ ⎟= − + ⋅⎜ ⎟⎜ ⎟⎜ Δ⎝ ⎠
u u u n

u
n .

38

Chapter 4. Lagrangian Fluid Dynamics

Density Expression (w/kernel) Liquid/Gas

Mass () (),i j default ij
mW hρ = −∑r r jr L + G

Surface normal (inward) () (),j
i default ij

j

m
W h

ρ
= ∇ −∑n r r rj L

Pressure force (internal) (2 2 ,jpressure i
i i j pressure i j

i jj i

pp m W hρ
ρ ρ≠

⎛ ⎞⎟⎜ ⎟⎜= − + ∇ −⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑f r)r L + G

Viscosity force (internal) () ()2 ,jviscosity
j i viscosity i ji

jj i

m
Wμ

ρ≠
= − ∇ −∑f u u r hr L + G

Gravity force (external) gravity
ii ρ=f g L

Buoyancy force (external) ()0buoyancy
ii b ρ ρ= −f g G

Surface tension force
(external)

()2 ,jsurface i
default i ji j

ji

m
W hσ

ρ
= − ∇ −∑nf r

n
r L

Table 4.1 Densities and their expressions including smoothing kernel choice if employed. Last
column informs whether the density applies for a liquid or a gas or both.

39

5 Implementation

The SPH method for Lagrangian fluid dynamics and all its auxiliary components
described in Chapters 3 and 4 have been implemented in OpenTissue [28]. To
retrieve a guaranteed working condition of the implementation that connects to this
report, checkout revision 2310 from TRUNK, see Figure 5.1 for supplementary
information about the revision. As of writing, OpenTissue employs Subversion as the
version control system. For more details on how to get access to the repository
please consult the OpenTissue web page.

Figure 5.1 Screenshot of the log at rev. 2310 from the TRUNK.

 We have included a running fluids application in OpenTissue, which
demonstrates a complete utilization of SPH to simulate Lagrangian fluids. The
application supports different fluid materials and different collision containers.
Motion sequences grabbed from various fluid simulations, including the simulations
presented throughout Chapter 6, are available on the OpenTissue media page.

Figure 5.2 An overview of the Lagrangian fluid loop.

 Figure 5.2 illustrates the basic simulation flow of our interactive Lagrangian fluid
simulator. In this chapter we will go into details on the contents from each step.
Section 5.6 describes the simulation flow in chronological order with references to
employed equations and sections.
 During the implementation of the SPH system and the fluid application we came
across several performance issues. Most importantly is the time complexity for the
SPH computations, which prevents any interactivity for fluid simulations of just a
few hundred particles. This performance problem can be improved algorithmically,
and the solution is described next. Also when working with physics-based
animation, some parameter tweaking is unavoidable. Some time has also been put
into a review of the important physical parameters that are a necessary evil to
obtain realistic looking fluids.

40

Chapter 5. Implementation

 We complete the chapter with a discussion on further improvements that can be
applied to increase the overall performance of the method. The discussions are
mostly non-algorithmically, but we also review one way to parallelize the SPH force
computations.

5.1 Fast Nearest Neighbor Search

The evaluation of an SPH term iterates through all particles. As each particle must
evaluate several SPH terms, the naïve time complexity for the Lagrangian fluid
simulation with n particles is bound by . An asymptotic squared running time

complexity is not satisfactory, and will in general deviate from any interactive speed
as the amount the particles grow. The smoothing kernels all have the finite compact
support radius , and by definition the kernel contribution from any particle located
beyond is zero.

()2O n

h
h

 To increase the performance we must utilize that only particles near the location
in question are relevant. Fortunately, the field of computational geometry provides
us with a number of nearest neighbor search (NNS) algorithms, which are widely
used to increase performance in collision detection [1]. A fast NNS algorithm
typically subdivides space into a grid of voxels or cells, and a performance increase
is obtained by limiting the search to the neighborhood in interest. The SPH
computations can get a significant increase in performance by using a fast NNS
algorithm to find the particles within a radius h . The asymptotic time complexity
decreases from to , where m is the average number of particles found.

Theoretically, if all particles are distributed uniformly, m is constant and thus the
running time complexity will be linear in . However, for a linear time complexity
in the amount of particles to hold, the search time from the NNS algorithm must be
constant, such as the spatial hashing method.

()2O n (O nm)

H

()O n

5.1.1 Spatial Hashing
The spatial hashing method [36] is a fast NNS algorithm with a lookup that
theoretically is bound by . It uses a hash function to generate hash keys for
each grid cell. The hidden constant in this method is very much dependent of how
well the hash function generates unique keys, and how fast hash keys are
generated. Unique keys are important due to hash collisions, i.e. multiple keys that
map to the same cell.

()1O

 The hash function we are using can be found in [36] and maps a dicretized 3D
point into a 1D hash index key, and it is defined by

 , (5.1) () ()1 2 3ˆ ˆ ˆ ˆxor xor modx y zhash p p p n=r r r r

where is the size of the hash table, and Hn

41

Chapter 5. Implementation

 () (ˆ / , / , /
T

x y zl l l⎢ ⎥)⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦r r r r r (5.2)

is the dicretized 3D point, with the cell size l . The three unknowns in (5.1) are large
primes and in our case we are using

 (5.3)
1

2

3

73,856,093 ,

19,349,663 ,

83,492,791 .

p

p

p

=

=

=

 Analyses and measurements of the hash table size, , and the grid cell size, l ,
can be found in [

Hn

36]. We cannot adopt the information explicitly for the fluid
particles, because the analyses primarily concern collision detection between
tetrahedra, but some findings are useful. The table size must be large enough to
limit hash collisions, but at the same time, too large table sizes will increase
memory cache misses. In all cases, the hash function (5.1) works most efficiently if
the table size is a prime number [36].
 Some information on vertices from [36] serves as a convincing foundation for
our particles, and our own experiments verify the following findings. For the table
size we use

 ()2Hn prime n= , (5.4)

where is a function that returns the next prime , and is the

amount of particles in our fluid simulation. We already know that for

(),prime x x ∈ x≥ n

() 0W =r
h>r is valid for all smoothing kernels, thus for the cell size we use

 , (5.5) l h=

which must be the most optimal choice.

5.1.2 Spatial Particle Queries
The first pass in the spatial hashing is to insert all particles. Particle i is inserted
into the spatial hashing table with the hash index returned by (5.1),

 ()()ˆ_ i ihash table hash Particle⎡ ⎤ =⎢ ⎥⎣ ⎦r r , (5.6)

where each entry of must be a dynamic list that can hold multiple
particles.

_hash table

42

Chapter 5. Implementation

 The second pass in the spatial hashing is to perform the particle queries. A single
particle query first computes the discrete bounding box of the sphere represented
by the location of the query particle, , and the smoothing kernel radius h . The
discrete bounding box of the sphere is represented by two vertices, a minimum and
a maximum such as

Qr

 . (5.7) ()() ()(ˆ ˆ, , , , ,T
min Q max QBB h h h BB h h h= − = +r r r r)T

)

Next we iterate from to over all three components, creating unique
discrete positions. For each discrete position we retrieve a dynamic list L ,

minBB maxBB

Dpos

 (_ DL hash table hash pos⎡ ⎤= ⎣ ⎦ , (5.8)

where contains zero or more unique particles. Finally we check each particle in
 if it is inside the sphere using

L j
L

 Q j h− ≤r r , (5.9)

and add it to a resulting particle container if (5.9) is true.

5.2 Incompressibility

The Navier-Stokes equations (2.1) and (2.2) describe the momentum of motion for
the fluid, and require that the velocity field is divergence free for the fluid to be
incompressible. However, the incompressibility equation assumes that the mass-
density is constant in the fluid, but if it varies and becomes greater than the rest
density , we no longer have volume preservation, and hence the fluid is not
incompressible.

0ρ

 For Lagrangian fluids the pressure force density is the only contribution that can
secure the mass-density will not exceed the rest density anywhere. The
incompressibility is thus implicitly modeled though the pressure term (4.12), which
is repeated here for the sake of convenience

 . (5.10) (0p k ρ ρ= −)

The level of the fluid compressibility is controlled directly by adjusting the gas
stiffness constant k , and incompressibility can only be obtained as k .
Unfortunately, as p in

→ ∞
(5.10) works as a standard Hookean spring, increasing k

implies decreasing the integration time step , as numerical instabilities
otherwise will occur. Another unfortunate side effect also appears when increasing

tΔ

43

Chapter 5. Implementation

k . If the attraction force contribution from the pressure force will also
increase, but this can be accounted for by using a smaller value for k in this
situation.

0ρ ρ<

 We are not interested in using a too small integration time step, as it does not
comply with the requirement of interactive fluid simulations. Consequently, using
very large values for in case of will not work as a solution for the lack of
incompressibility. The moving-particle semi-implicit, or MPS, method from [

k 0ρ ρ>
17] is

closely related to SPH and solves the incompressibility problem for Lagrangian
fluids by applying additional mass-density and pressure correction terms. However,
the correction terms must be solved simultaneously, and that usually requires an
implicit procedure, e.g. the conjugate gradients method.
 In [21] Monaghan states that near-incompressibility can be obtained by using an
artificial state equations so that the level of compressibility is at or below 1% . The
disadvantage is that the time step must then be a factor 10 shorter than normal. In
our system near-incompressibility can thus be obtained by increasing k in (5.10)

while using a time step of 110 tΔ , which might just be acceptable.

5.2.1 Discussion
The compressibility of a fluid can be monitored using the mass-density. If the mass-
density locally has become greater than the rest density, we know that the volume
no longer is preserved for particles in that region. This is not the case in the
opposite situation that is, when the mass-density is less than the rest density. It
locally just indicates that we could be on the surface or in isolated droplets.
 One possible explicit solution to the incompressibility problem is to look at
particles more geometrically and employ a relaxation-based procedure. If a
minimum distance between particles can be found that, when applied to all
particles in a neighborhood, will guarantee that the mass-density locally never
exceeds the rest density, it will be a matter of pushing particles away from each
other until the rest density has been obtained globally. Such a solution could be
applied to nearly incompressible fluid flows without decreasing the simulation time
step.
 Also, it might be beneficial to remember that SPH was not designed for
incompressibility fluid flows, and instead include the continuity equation for a
compressible fluid, under the assumption that the density no longer is constant. The
continuity equation (4.6) then becomes the rate of change for the mass-density,
and according to [21] the continuity equation for particle i can then be expressed
in SPH formulation as

 () (,i
j i j i j

j
m Wt

ρ∂ = − ∇ −∂ ∑ u u r r)h , (5.11)

for some smoothing kernel W .

44

Chapter 5. Implementation

5.3 Physical Parameters

In this section we combine the theoretical and practical elements of the SPH
method for Lagrangian fluid simulation. In the aid for using correct physical
quantities, it is important not to exaggerate the realistic domain of the physical
parameters. Some parameters are hard to define in reality, thus they are usually
determined experimentally. However, we will try to describe their usage and what to
focus on during the determinations. Interactive Lagrangian fluid dynamics can
simulate different kinds of small-scale liquid materials, where rich details are in
focus. The method is not meant to simulate large-scale fluids, e.g. open waters.
 We will also put some focus on the physical units, which can have a great impact
on a simulation if applied in different scales. The units used in this work are the
standard System International (SI) units.

5.3.1 Fluid Volume and Particle Mass

Given a fluid, the volume, V in []3m , the fluid represents, and the fluid particle
mass, in [, then the amount of particles that occupy the volume, n , can be
determined using

m]kg

 Vn mρ= , (5.12)

where in ρ 3
kg
m
⎡
⎢⎢ ⎥⎣ ⎦

⎤
⎥ is the density of the fluid. The equation (5.12) is a direct

rearrangement of (3.3), where it is defined for the entire fluid instead of a single
particle. Often it is more practical to provide the total amount of fluid particles, and
either the fluid volume or the particle mass, to determine the missing part. As an
example, if water should be approximated by particles, with the

mundane density of non-boiling water at 1,000

0.1 3m 5,000

3
kg
m

, the mass for a single water

particle yields

3

3
0.11, 000 0.025, 000

kgV mm n m
ρ= = = kg . (5.13)

5.3.2 Smoothing Kernel Support Radius
The support radius, h in []m , from a smoothing kernel is vital for a stable and
robust fluid simulation. It is a normal misconstruction that as h , then the SPH
computations get more precise. In fact, if h is too large, the result from an SPH
approximation can be very inaccurate. The simple explanation to why this is true is
that the particles in real-time fluid simulations are sparsely. When is large, the
kernel weights particles near the center less than when h is small. Also, if h
repeatedly reaches beyond the particles, the generated result will not be
satisfactory. However, if the results will also be imprecise, due to not enough

→ ∞

h

0h →

45

Chapter 5. Implementation

particles are included in the weighting by the smoothing kernel. A 2D analogue to
the problem is depicted on Figure 5.3.

a) Too large support radius.

b) Too small support radius. c) A usable support radius.

Figure 5.3 A 2D illustration of the problem of using either a) a too large support radius, or b) a too
small support radius. The dark sphere in the center is the particle in question. The support radius is

illustrated as a circle. In this example the support radius in c) will be a good choice.

 More intuitively, the problem of finding the right support radius for a simulation
can be converted into a problem of determining the number of particles an SPH
calculation should include in average. If the support radius is considered as a
sphere radius, we can calculate the size of a radius that would allow particles to
fill the volume of the sphere. We implicitly assume that the particle density is
constant. This is not always true due to the pressure force fails in keeping the fluid
incompressible, and thus the resulting radius size only becomes an average. Filling
the volume of a sphere with x particles, by using the particle density of

x

n
V , yields

the sphere, and hence support radius,

 () 34
3

nx hV π=

 3 3
4
Vxh nπ= , (5.14)

where V is the fluid volume and n is the amount of particles occupying it.
 Using (5.14) to determine a suitable support radius still leaves one unknown; the
amount of the average kernel particles, , which depends on several properties of
the fluid, e.g. the strength of the total force acting on the fluid. In the time of writing
we have yet to determine whether an expression that defines can be constructed
from the information that is already available. In our simulations we have chosen x

x

x

46

Chapter 5. Implementation

experimentally. Taking into account the problem of choosing a too large support
radius, combined with the performance issues that raise when too many particles
are included in each SPH calculation, then should be chosen to be the smallest
possible amount of particles that renders the fluid simulation stable, while still
respecting the properties of the fluid material.

x

5.3.3 Time Integrator and Time Step
The time step, in tΔ []s , associated with the numerical time integration is very
important for an interactive simulator. If the physical parameters are chosen to
reflect reality best possible, and the integrator advances the fluid system in time
using , then actually describes a discrete time step in the real world. The
time step explicitly influences the experience of the fluid simulation. For the viewer
to witness a fluid simulation in real time, the running frequency of the application

must be

tΔ tΔ

1
tΔ Hz , which equals 1tΔ frames per second (fps). Applications rarely

simulate physics-based systems in real-time, which is why physics in e.g. computer
games seems to run more or less in slow-motion.
 During the development of the Lagrangian fluid simulator, we have been working
with the three integrators discussed in Section 4.5. In all cases we have been able
to use a time step of at least . The Verlet integrator can in rare cases use
a time step of . However, collision handling is not working satisfactory as
we manipulate positions rather than velocities, and this can be verified as small
disturbances near the collision boundaries. The leap-frog integrator seems superior
to the other integrators, regarding stability and performance. Employing the leap-
frog integrator we can successfully simulate all types of fluids supported by our
simulator, thus the leap-frog method will be our choice of time integrator.

0.01tΔ = s
0.02tΔ = s

 We seek to use as large a time step as possible, and employing the Leap-frog
integrator we can use a time step of 10 . The physical parameters that depend on
the time step, i.e. the gas stiffness constant, must be adapted to respect the time
step size. However, we do not see this as an additional drawback, compared to the
gas stiffness constant itself. The fluid simulation can be paused at anytime by using

.

ms

0tΔ = s

5.3.4 Gas Stiffness and Rest Density
The pressure force density is the most important contribution to a successful fluid
simulation. Without the pressure force the fluid simply collapses. We already know
that the pressure force cannot secure incompressibility, thus the task is to get as
little compressibility as possible. The computation of the pressure force density
includes the pressure at the particles, which also depend on the mass-densities.

 The pressure term (5.10) employs a rest density, in 0ρ 3
kg
m
⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦

, which can be

chosen to reflect reality exactly. Besides using the rest density for the pressure
calculations, we also use the same value as material density in the determinations
of other fluid properties using (5.12). A physical correct fluid density depends on
several other physical properties of the fluid, e.g. temperature, rest pressure, etc.,

47

Chapter 5. Implementation

and values for various fluid materials can be looked up in physics books and on the
internet. As examples, water at 293. (20) in atmospheric pressure at

, has a density of 998.

15° K °C

101,325 Pa 29 3
kg
m

, and steam at 100 (1) has a

density of 0.

,000 Pa Bar

59 3
kg
m

.

 As any other spring force (5.10) also employs a spring constant. The constant is
the gas stiffness constant, k in []J , also mentioned in Subsection 4.2.1. The gas
stiffness constant is theoretically given by

 , (5.15) k nRT=

where in [n]mol is the number of gas molecules, 8.3144 JR
mol K

= is the universal

gas constant, and T in [is the temperature. Unfortunately, we cannot use]K (5.15)
to compute the gas stiffness. The result is simply too large to make any sense in a
numerical simulation running at interactive rates. As an example for a 500 particle
water simulation with a constant temperature at 293 , using the water particle
mass of 0. , the gas stiffness yields

.15° K
02 kg

500 0.02

8.3144 293.15 1,261,710
0.018

kg Jk kg mol K
mol

⋅
= ⋅ ⋅ ≈K J , (5.16)

where the molar mass for water of 18.016 gmol has been looked up. A gas stiffness

larger then Joule will require an extremely small integration time step, which
consequently will result in new numerical instabilities, not to mention a boring
physics-based fluid animation.

61 10×

 We have chosen the gas stiffness to be a user defined material constant, which
does not depend on the amount of particles used for a simulation. The gas stiffness
is influenced by how viscous the fluid is, due to damping, and how large the time
step is. In this work the time step is fixed globally, and the viscosity is fixed to reflect
a specific fluid behavior. Tweaking the gas stiffness parameter to be as large as
possible, while still keeping the fluid simulation stable under all conditions is a
necessary evil. We have not successfully simulated any stable fluid material with a
time step of 10 and using a gas stiffness constant of more than 10 . ms J

5.3.5 Viscosity Coefficient
The viscosity force is essential in real-time fluid simulations. Physically, it simulates
the viscous behavior of the fluid, but numerically, it damps the simulation and
provides stability to the system. Basically, the more viscous the fluid is, the more
stable the system becomes. In Section 4.5 different integration schemes are
described. We have deliberately not added any damping terms to the time

48

Chapter 5. Implementation

integration, even though it is common to damp the velocity. The reason we have
chosen not to use any explicit integration damping is because the magnitude of the
damping coefficient very dependent of the chosen integration scheme. Instead we
have chosen to unify the damping procedure by increasing the viscosity coefficient
and thus use the viscosity force as the only damping term. The viscosity kernel has
also been designed with damping in mind, and does allow omitting any kinds of
additional damping [23].

 The viscosity coefficient is the dynamic viscosity, in 0μ > []Pa s⋅ , and to include a
reasonable damping contribution, it should be chosen to be approximately a factor

 larger than any physical correct viscosity coefficient that can be looked up in
the literature. However, care should be taken not to exaggerate the viscosity
coefficient for fluid materials. If the contribution of the viscosity force density is too
large, the net effect of the viscosity term will introduce energy into the system,
rather than draining the system from energy as intended.

1,000

5.3.6 Surface Tension and Threshold
The surface tension coefficient can be chosen to reflect reality, but due to the
asymmetrical inconvenience of the surface tension force, it is not easy to conclude
whether or not the surface tension coefficient can be chosen completely arbitrary
for artificial fluid materials. However, if the fluid is constrained in some container
with only a single free surface, it is possible to detect the impact of the surface
tension, and tweak it for to meet any desired criteria.
 The surface tension force requires the computation of the inward unit surface
normal. In (4.32) the threshold, , is used to identify whether or not a surface
normal is fit for computation, and implicitly if the particle, used to compute the
normal, is near or on the surface. We have not been able to connect any physically
meaning to the threshold, thus is seems to be yet another user controlled constant.
However, we have conducted experiments with the threshold value in several fluid
simulations, and we have found a conceivable method to determine the threshold
using already known properties of the fluid. We suggest the threshold can be
obtained using

 x
ρ= , (5.17)

where is the material density, or the rest density, of the fluid, and x is the
amount of the average kernel particles, which is described in Subsection

ρ
5.3.2. If

the threshold is determined using (5.17), its resulting SI unit does not make any
physically sense, but our experiments reveal that it gives a plausible result in
detecting the particles located on and close to the surface.
 As a final note on the inward surface normal, once a normal has been detected
as a surface normal using (4.32) and (5.17), the correct unit surface normal at
particle is given by i

49

Chapter 5. Implementation

 ()
()
i

i
−
n r
n r

, (5.18)

which might be of interest in the further developments, e.g. for visualization
purposes.

5.4 Fluid Materials

Fluids are the common term for liquids and gasses. Examples of some of the
interesting fluid materials we have been working with are summarized in this
section. The important thing is the combination of the physical material parameters
that together form the unique behavior of the fluid. The parameters are based on
Section 5.3 together with experiments from our fluid simulator. As previously stated,
we employ the pressure force from (4.10) and the leap-frog time integrator.
Illustrations from the specific fluid types that are described in the following
subsections are presented visually in Section 6.1.
 Table 5.1 lists the parameters that are common for the different fluid materials.
When a value is enclosed in parentheses, it is a value in an alternate unit. Values
enclosed in parentheses in the material tables are physically correct, but deviates
from the actual values used in the simulation of the fluid material. In Table 5.1 and
in the forthcoming material tables a row with a description in italic means it is only
of informational value, i.e. it is not used explicitly in the simulation.

Description Symbol Value Unit

Gravitational acceleration g []0,0, 9.82T− 2
m
s

Time step tΔ 0.01 s

Temperature T
293.15°

()20°

K

()C

Pressure p
101325

()1

Pa

()Atm

Table 5.1 Common properties used for all fluid materials.

As can be observed from the gravitational acceleration, we have chosen the
negative -axis as the direction “downwards”. The temperature and pressure
information has been used to obtain fluid properties, such as density, viscosity, and
surface tension coefficient from the literature.

z

5.4.1 Water
Water is very liquid and brisk, but only a little viscid, thus it is a challenge keeping a
realistic water simulation stable. We have modeled the water material by using as
many physically correct values as possible. Table 5.2 lists the values used to comply
with a realistic water simulation.

50

Chapter 5. Implementation

Description Symbol Value Unit

Density (rest) 0ρ 998.29 3
kg
m

Mass (particle) m 0.02 kg

Buoyancy diffusion b 0 n/a

Viscosity μ
3.5

()31.003 10−×
Pa s⋅

Surface tension σ 0.0728 N
m

Threshold l 7.065 n/a

Gas stiffness k 3 J
Restitution Rc 0 n/a

Kernel particles x 20 n/a

Support radius h 0.0457 m
Table 5.2 Physical parameter values used in the realistic simulations of water.

5.4.2 Mucus
The mucus material is not modeled from a realistic fluid, but from our interpretation
of such a substance. It is solely a material that resembles slime and goo as seen in
motion pictures. Mucus is a highly viscous liquid with a strong surface tension.
Table 5.3 lists the parameter values used to simulate our fictitious mucus.

Description Symbol Value Unit

Density (rest) 0ρ 1000 3
kg
m

Mass (particle) m 0.04 kg

Buoyancy diffusion b 0 n/a

Viscosity (dynamic) μ 36 Pa s⋅

Surface tension σ 6 N
m

Threshold l 5 n/a

Gas stiffness k 5 J
Restitution Rc 0.5 n/a

Kernel particles x 40 n/a

Support radius h 0.0726 m
Table 5.3 Physical parameter values used in the simulations of our own mucus material.

5.4.3 Steam
Realistic hot water steam undergoes diffusion and dissipation, which we do not
model explicitly. Buoyancy is also common for a gas, due to the diffusion of the
temperature. We only work with isothermal fluids, thus the buoyant forces we use
are based upon the difference in mass-densities, and cannot model the turbulence
often associated with a hot gas. Table 5.4 lists the values used to imitate a steam.

51

Chapter 5. Implementation

Description Symbol Value Unit

Density (rest) 0ρ 0.59 3
kg
m

Mass (particle) m -55 10× kg

Buoyancy diffusion b 5 n/a

Viscosity (dynamic) μ
0.01

()51.2 10−×
Pa s⋅

Surface tension σ 0 N
m

Threshold l - n/a

Gas stiffness k 4 J
Restitution Rc 0 n/a

Kernel particles x 12 n/a

Support radius h 0.0624 m
Table 5.4 Physical parameter values used in the simulations of isothermal steam.

 The normal gravity force is disabled when the buoyancy force is applied. This is a
practicable hack when simulating gasses. Either gravity is turned off or substituted
by some external buoyant force.

5.5 Rendering

We have not included any surface rendering techniques in this report, as we believe
that the standard visualization methods have been reviewed thoroughly in the
literature. However, we have implemented a fluid surface visualization prototype
that is based on the marching cubes algorithm [19]. A particle-based gas could
probably be visualized using translucent sprites or blobs, thus no surface extraction
is necessary. Section 7.2 contains more information on our work in progress for
alternate fluid surface visualization methods.
 To visualize the fluid materials we render the particles as colored spheres. This
gives a believable understanding of how the fluid flows. Where the mass-density is
high the concentration of fluid particles is larger compared to areas with a low
mass-density. Using a fixed sphere radius for all particles will in general not look
reasonable, as either gaps or overlaps between spheres will occur. The mass-
densities of the particles can be used to determine the sphere radii convincingly.
Using the relation given by (3.3) the sphere radius r can be computed as

3

3

4
3
4
3

V r
m r

π
πρ

=

=

 3 34
mr πρ= . (5.19)

52

Chapter 5. Implementation

 To linearly scale the mapping between the sphere radius and the mass-density at
the particle, we multiply the right hand side of (5.19) by a user defined scalar
constant , 0s >

 3 34
mr s πρ

⎛ ⎟⎜= ⎟⎜ ⎟⎜⎝
⎞
⎠

t

. (5.20)

5.6 The Lagrangian Fluid Method

In this section we will summarize the different parts of the simulator with references
to the presented theory and the implementation details. Figure 5.2 gives a graphical
overview of the entire simulation flow. Each “box” will be described in details in the
following subsections. Although the figure can be interpreted as the internal forces
must be computed before the external forces, this is not strictly required. The
internal and external force density computations can be performed in any order.
 The subsections include algorithmically step-by-step procedures, which can be
used as an implementation layout, followed by additional comments on the steps.

5.6.1 Initialize SPH System
i. Create the fluid material, e.g. use as reference the values given in Section

5.4.
ii. Create particles and set the positions, the initial velocities, and the fixed

particle mass, e.g. use
n

(5.12) to determine missing values.
iii. Initialize the smoothing kernels using (5.14) to compute the compact

support radius.
iv. Create the spatial hashing data structure using (5.4) and (5.5), and insert

each particle using (5.6).
v. Create collision objects, e.g. use the implicit primitives provided in

Subsection 4.4.2.
vi. Initialize the leap-frog integrator using (4.67) for all particles.

 In step vi the leap-frog initialization requires the particle acceleration at time

 to compute the velocity offset at time . The initial acceleration can
be computed by
0t = ½t =− Δ

(4.2), where the forces working on the particles are computed in
the next three subsections.
 The particles must all have unique positions, i.e. no two particles must share the
same location. Particles having the exact same positions will never be separated.
They will wrongfully be treated as one larger particle and thus result in oddly
behaved fluid dynamics. It is also important to know that if the particles all share
the same value for the same component, then the dynamics is constraint to work in
two dimensions. The same is valid if two components are the same for all particles,
then the simulator only works in one dimension. Only external influences can break

53

Chapter 5. Implementation

this constraint, e.g. a collision handling that due to the collision response can
change the particle positions, and hence the equal component values.

5.6.2 Compute Density and Pressure
For each particle , do: i

i. Search for the particle neighborhood using the spatial hashing single
particle query from Subsection

iN

5.1.2.

ii. Compute mass-density using iρ (4.6), but only iterate over the particles from
. iN

iii. Compute pressure using ip (4.12), and use the material density as the rest
density, . 0ρ

5.6.3 Compute Internal Forces
For each particle , do: i

i. Search for the particle neighborhood using the spatial hashing single
particle query from Subsection

iN

5.1.2, and use only the particles from to
compute the SPH forces.

iN

ii. Compute the pressure force density acting on the particle using (4.10).
iii. Compute the viscosity force density acting on the particle using (4.17).

iv. cosinternal pressure vis ity
i i if f f← + .

 In step i we need to search for the particle neighborhood once more, because all
SPH forces depend on the mass-density that must be computed before any force
density.

5.6.4 Compute External Forces
For each particle of a liquid fluid, do: i

i. Compute the gravity force density using (4.24).
ii. Compute the inward surface normal using (4.28).

iii. surface
if ← 0 .

iv. If (4.32) is true using (5.17) as the threshold then
a. Compute the surface tension force for the particle using (4.26).

v. external gravity surface
i i if f f← + .

For each particle of a gaseous fluid, do: i

i. Compute the buoyancy force density using (4.25).

ii. external buoyancy
i if f← .

 The steps ii and iv.a for the liquid fluid also depend on the particle neighborhood

, as both steps employ SPH. Fortunately, there are no other dependencies that iN

54

Chapter 5. Implementation

will disallow the steps to continue from step iv in the previous subsection, and thus
to reuse the particle neighborhood that has already been computed. iN

5.6.5 Time Integration and Collision Handling
For each particle , do: i

i. . internal external
i i iF f f← +

ii. Compute the particle acceleration using ia (4.2).

iii. Use the leap-frog integrator to advance particle velocity and position using
(4.65) and (4.66), respectively.

iv. Perform collision detection against collision primitives using (4.33).
v. If a collision occurred then

a. Project particle position according to the contact point using (4.55).
b. Update the velocity using (4.58).

vi. Approximate the new particle velocity using (4.68).

 During the collision detection in step iv all implicit primitives are tested for
penetrations. As soon as a collision is detected the collision is handled in step v. If
multiple collision objects are included in the simulation, unhandled collisions might
occur, e.g. with overlapping implicit primitives or implicit primitives contained in
each other. One solution to this problem includes only to update the position in step
v and then return to step iv and check for further collisions. For each collision the
position is only updated in step v.a if the collision has a larger penetration depth
than already handled. By default, the larger the penetration depth is, the closer to
the previous position the collision occurred. When no further collisions are detected,
the velocity update from step v.b can be performed using the collision data
associated with the largest penetration depth.
 Once all the particles have been updated the spatial hashing must likewise be
updated to reflect the new particle positions.

5.6.6 Render Particles
For each particle , do: i

i. Render a sphere with its center at and a radius determined by ir (5.20).

 The color of the spheres could be stored with the fluid material, e.g. some blue
shade for water, and a green slimy shade for the mucus material.

5.7 Discussion

These discussions are regarding issues and improvements due to performance. As
of writing, the SPH implementation and demonstration application have only been
numerically optimized on a small scale, as we have been focusing at optimizations

55

Chapter 5. Implementation

on an algorithmic level. There are several things that can be done to help gain a
higher performance frequency, some of which will be discussed in this section.
 In Section 5.6 we perform the same particle query twice for each particle, due to
particle dependencies between mass-density and SPH forces. Although the
asymptotic running time for a single particle query is bound by , being the
average number of particles returned by the spatial hashing, the hidden constant in
the –notation has some impact on the performance of the application. It will
increase performance if only a single particle query is necessary per particle. A
multiple particles query employs the single particle query procedure from
Subsection

()O m m

O

5.1.2 for each query particle. The problem is that we have no longer any
idea about the connectivity between the query particles and resulting particles.
Instead when (5.9) is valid we can add the particle pair ,QParticle Particlej to the

resulting particle container, where is the current query particle. This
restores the lacking particle connectivity, but it also increases the particle query
memory consumption from to .

QParticle

()O m ()O nm

 The fluid solver presented in Section 5.6 handles each particle sequentially, i.e.
all forces acting on a particle are computed before the next particle iteration is
commenced. The reason for the sequential behavior is the single particle query, but
employing the multiple particles query we can now allow for a parallel solver. To
handle all the particles in parallel does in general imply that we can complete the
computations of the same force for all particles before the next one, i.e. we can
iterate over the forces. This is an important achievement that can allow the
computations to be performed on a distributed system. For our specific purpose it
will allow the fluid solver to be implemented on a multiprocessor architecture or on
a graphics processing unit (GPU).
 Memory management and cache coherency are important terms when working
with many particles and only expect a linear performance decrease with respect to a
linear increase in particles. The spatial hashing data structure and the resulting
particle query container store references to all the particles, which are not optimal
for the cache coherency. Due to cache misses we expect a better performance if
particle indices are used rather than particle references. The indices can be used to
retrieve particles from the same place in memory. In [23] a simulation speed-up of a
factor 10 was obtained by storing copies of the particles in their grid data structure,
and thus doubling the memory consumption. We store a number of attributes with
each particle, and experiments have shown that using copies of the particles in the
spatial hashing grid cause a noticeable decrease in performance, due to the
duplication of all the particle members.
 Assuming that particle indices are employed for the spatial hashing and the
result container instead of particle references, and that the multiple particles query
is used for neighborhood retrieval, then another performance gain can be obtained
without much trouble. Forces between pairs of particles have in general the same
magnitude, but with opposite directions. This implies that the force contribution
between particle pairs only needs to be computed once. Using the multiple particles
query each index pair is represented twice, i.e. ,i j and ,j i . Taking advantages of

56

Chapter 5. Implementation

Newton’s 3rd law, a straight forward method to omit the duplicates is to add the
index pair to the result container only if . Up next, the SPH forces between each
particle pair is computed and added to both particles, but with different signs.

j i<

 Many mathematical operations are executed each frame to perform
comparisons, calculate constants, etc., and several of these can be precomputed in
the initial setup of the simulation, e.g. the constants used in the computations of
the smoothing kernels, as the support radius is kept constant throughout the
simulation. Even kernels can be precomputed and stored in arrays. The precision of
a precomputed kernel is directly dependent of the size of the array. The left and
right hand sides in comparisons can be squared if both sides are positive, because

 if . This little trick can ease the computations in many
comparisons that often require the evaluation of the square root. A classic example
is the particle-inside-sphere comparison from

2x y x y≤ ↔ ≤ 2 0,x y ≥

(5.9), which is used to decide if a
particle is within the range of the compact support radius. The comparison becomes
cheaper if both sides are squared,

 . (5.21) () () 2
Q j Q j h− ⋅ − ≤r r r r

5.8 Summery

In this chapter the following important topics are covered/achieved:

• The SPH computational time complexity of for n particles can be

reduced to , being the average number of interacting particles, by
utilizing a spatial hashing method for fast retrieval of the nearest particle
neighborhood.

()2O n

()O mn m

• Near-incompressibility can be obtained by decreasing the time step to 110 tΔ

and increasing the gas stiffness constant as much as possible, while still
obtaining a stable simulation.

• The relation between fluid volume, fluid particle mass, and the amount of
fluid particles is

 Vn mρ= .

• The compact kernel support radius can be determined intuitively by choosing
, which is the average amount of interacting particles, x

 3 3
4
Vxh nπ= .

• The leap-frog time integrator is superior to the Verlet and semi-implicit Euler
integrators, and allows for a simulation time step of . 0.01t sΔ =

• The viscosity coefficient is also used for numerical damping in the system,
and should be chosen to be approximately 1 times larger than true
values.

, 000

57

Chapter 5. Implementation

• As physically correct fluid properties as possible are used to define our three
fluid materials, which include water, mucus, and steam.

• Fluid particles are rendered as colored spheres with a radius determined by
the particle mass-density,

 3 34
mr s πρ

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
.

• A complete algorithmically procedure to implement our Lagrangian fluid
solver step-by-step is presented using a high level pseudo language.

• The default sequentially fluid solver can be converted into a parallel solver
by using the multiple particles query rather than the single particle query.

58

6 Results

In this chapter we will put our Lagrangian fluid solver to the test, and present some
of the more interesting results that we have obtained. We will test different aspects
of the topics that we have described through Chapter 4 and 5. The majority of the
test results and conclusions will be based on visual convictions. We are computer
scientists, thus we are in general pleased if the results are visually convincing, while
keeping in mind that the simulations already use as physically correct fluid
parameters as possible. In this chapter we depict still frames from motion
sequences grabbed from fluid simulations. The motion sequences can be found on
the OpenTissue media page [28].
 Firstly, we present various situations of our fluids and their properties, along with
some cases of user interactivities. Next, we will go into more details on the fluid
flows, and try to frame a survey on whether the fluid flows are advanced
realistically. Subsequently, stability and performance tests are executed which are
important matters regarding interactive fluid design. Finally, we reveal the darker
side of the method, which primarily concerns the lack of incompressibility.

Figure 6.1 Lagrangian water constrained in a rectangular box. The complex wave to the left is a

result of two currents that met in high speed.

6.1 Fluid Properties

The fluid properties of water and mucus, presented in Subsection 5.4.1 and 5.4.2,
respectively, are used throughout the simulations illustrated in this section. Figure
6.2 depicts both liquids for approximately the same volume. The water particle
mass is half the mass of a mucus particle, which results in twice the amount of
particles for the water, compared to the mucus. The interesting part on Figure 6.2 is
the difference in surface tension, which cause the different fluid surface curvatures.
On Figure 6.3 another difference between the fluids is depicted. A low viscosity

59

Chapter 6. Results

causes water to react more briskly in the rotating mixer as opposed to mucus, which
has a high viscosity.

a) Water, low surface tension. b) Mucus, high surface tension.

Figure 6.2 Fluids with different surface tension coefficients.

a) Water mixer, low water viscosity. b) Mucus mixer, high mucus viscosity.

Figure 6.3 Fluids with different viscosity are tumbled around in rotating mixers.

 In Subsection 5.4.3 we have described the parameters for a steam material. The
simulation of a steam is depicted on Figure 6.4. The scene consists of 2,
particles running at approximately 20 frames per second. We are aware that the
steam motion is not modeled realistically, because the thermal buoyancy effect has
been omitted from the model. Instead, we have based an artificial buoyancy force
on the difference of mass-densities, which can be considered a hack. The steam
material is merely present to illustrate that it is possible to use our fluid solver to
simulate other fluids than liquids, although it requires an additional development of
a thermal field using SPH.

000

60

Chapter 6. Results

Figure 6.4 A simulation of steam (or smoke) that expands inside a sphere container. The sequence

is over time from left to right, top to bottom.

 User interactions with the fluid are an important part of interactivity. We allow a
user to interact with a fluid by performing transformations to the fluid container. On
Figure 6.5 a user shakes the fluid capsule, which has been rendered invisible to
focus on the water. Nice water characteristics, e.g. the splashing, appear, due to the
external user influence. The invisible mucus capsule on Figure 6.6 is also shaken,
but unlike water the mucus material does not splash. Both simulations run
interactively with 1 particles. ,500

Figure 6.5 The fluid container is pulled quickly from right to left causing the water to splash.

61

Chapter 6. Results

Figure 6.6 The fluid container is pulled quickly from side to side causing the mucus to create long

connected blobby tails. Due to the high viscosity and surface tension the mucus fluid cannot splash
like water.

 Waves can be generated in several ways, e.g. by providing an external wind force
to the fluid surface, but we have created a special wave container for the same
purpose. The container is a rectangular box that can generate waves by moving one
of its faces. The moving box face is controlled by a positive sine function over time,
i.e. ()sin t , where t is the time. This will generate a realistic face motion to produce
waves. Figure 6.7 illustrates 4 still frames from a motion sequence that simulates

 water particles in the wave box. The frame on 4,400 Figure 6.1 is also from a similar
water wave simulation. The fluid solver runs the scene at approximate frames per
second, including the visualization of the particles.

5

 a) First wave is generated. b) The wave propagates through the water.

 c) Second wave is launched. d) The wave breaks when it collides with the first.
Figure 6.7 Water waves generated in a rectangular water tank similar to a wave pool in a water park.

The arrows indicate the box face movement that generates the waves.

62

Chapter 6. Results

6.2 Fluid Flows

The analysis of fluid flow is more an area of interest for physicists than computer
scientists. However, in order to be convinced that the Lagrangian fluid method can
produce realistic fluid motion we will examine the fluid flow.
 We will study the velocity flows produced by the dam-break problem for the water
and mucus materials. In a classic dam-break problem the fluid is constrained inside
a dam, and when the fluid is at rest the dam is broken, or the barricade that
constrains the fluid is removed. The fluid now flows freely and often collides with a
vertical wall.

Figure 6.8 Dam-break flow of water. The simulation time interval is 0. between each frame, from

left to right, top to bottom.
1s

 Frames from the dam-break of water simulated by particles are depicted
on

2,250
Figure 6.8. This is just a survey of how the visible water particles flow in the dam-

break problem. On Figure 6.9 we have focused on the water flow. The flow lines are
particle velocities visualized as arrows. The arrows are scaled according to the
magnitudes of their velocity vectors. In a) the dam is broken, and the water is sliding
down and increasing the velocity at the smooth bottom. In b) the water has collided
with the wall, and the particles are pushed upwards due to the pressure from the
water at high speed. In c) the water begins to overturn and in d) a wave is forming
with the help from the small amount of water above it that is falling down. The wave

63

Chapter 6. Results

hits the underlying water in e) and creates a small splash in f) due to the impact
with the oncoming current. The splash starts another wave in g) and finally in h) the
current is moving away. From c) notice how the water flow is returning at the bottom
after the collision, which manifests itself in thinning out the velocity strengths on its
way.

a) b) 0.15t = s 0.47t s=

c) d) 0.59t = s 0.73t s=

e) f) 0.82t = s 1.04t s=

g) h) 1.20t = s 1.40t s=

Figure 6.9 Close-up on the water velocity flow from the dam-break simulation on Figure 6.8. Precise
simulation times are indicated below each frame.

64

Chapter 6. Results

 We have compared the flow lines on Figure 6.9 with the dam-break problems
discussed in [3]. Although the paper focuses on interfacial flows, the dam-break
examples are a great reference for comparisons. Without going into physical details
we will state that the flow lines generated by our fluid solver seem very convincing
in describing how water flows.

Figure 6.10 Dam-break flow of mucus. The simulation time interval is 0. between each frame,

from left to right, top to bottom.
1s

 A mucus dam-break simulation of 2 particles is depicted on ,250 Figure 6.10. The
mucus material is very viscous, and it is easy noticeable that the mucus flow is
much calmer compared to the water flow. On Figure 6.11 the focus is on the mucus
velocity flow from the simulation depicted on Figure 6.10. The flow lines are
common for a viscous fluid flow. In a) the dam is broken, and as in b) the front of
the mucus flows more freely, compared to the rest of the mucus fluid that due to
the high viscosity partly still possesses the initial mucus dam structure. The mucus
flow has collided with the vertical wall in c) and the flow is propagating upwards.
The turning point for the mucus fluid happens around d) where it starts to ebb again
without creating an overturn wave as in the water dam-break simulation. In e) the
mucus hits the oncoming fluid current and a broad wave is forming. In f), g), and h)
the broad wave is slowing transporting away.

65

Chapter 6. Results

a) b) 0.12t = s 0.23t s=

c) d) 0.54t = s 0.64t s=

e) f) 0.80t = s 0.95t s=

g) h) 1.11t = s 1.38t s=

Figure 6.11 Close-up on the mucus velocity flow from the dam-break simulation on Figure 6.10.
Precise simulation times are indicated below each frame.

 Shock waves have been studied by physicists for different kinds of fluids. We
have simulated a vertical water pressure shock and will look at the flow lines from
the simulation. Figure 6.12 illustrates selected velocity flow frames from the
pressure shock simulation. The water is constrained in a vertical capsule and a
pressure shock can be replicated by shrinking the capsule in all dimensions. Due to

66

Chapter 6. Results

collision boundaries the water can only escape the high pressure increase by
expanding at the free surface. In a) the capsule container has been shrunken and
the water is building up a high pressure, which in b) consequently creates a water
shock explosion that expands the water particles spherically. The water can only
expand at the free surface as in c), but it is interesting to verify that the particles
within the water are actually sucked up with the surface expansion. In d) the surface
turbulence develops into splashes, while the particles within the water start to fill up
the volume again, e.g. seeking back from the compressed center. In e) the surface
splashes are getting calmer due to gravity, and finally in f) the particle splashes
return to the surface.
 We have not compared the pressure shock results with any real experimental
data on the matter, but we find it both interesting and convincing to how the
intrinsic water particles react to the pressure shock.

a) b) c) 0.06t = s s0.13t = 0.22t s=

d) e) f) 0.27t = s s0.37t = 0.45t s=

Figure 6.12 Water velocity flow from a vertical pressure shock. Exact simulation times are indicated
below each frame.

67

Chapter 6. Results

6.3 Sanity and Stability

The effects of the physical parameters described in Section 5.3 are shown
throughout this chapter. We believe that it is important to know that they are
making sense for the simulations. In this section we will show that the questionable
surface tension threshold parameter for determination of surface particles does in
fact work convincingly for our solver, even though is does not have any physical
meaning. We will also focus on stability for small-scale simulations.
 Our experiments show that the surface tension threshold parameter (5.17) can
be used to determine particles located near or on the surface. These particles are
used in the computations of the surface tension force for liquid fluids. On Figure
6.13 water is depicted in one-, two-, and three-dimensional situations, along with
detected surface normals. The surface normals are computed using (5.18), and
scaled to match the particles. The situation for the mucus fluid is the same as for
water.

a) Surface normals for 1-dimensional water.

b) Surface normals for 2-dimensional water.

c) Surface normals for 3-dimensional water.

Figure 6.13 Surface normals with water particles to the left and without to the right. The water
particles have been structured in a) 1D, b) 2D, and c) 3D.

68

Chapter 6. Results

a) 0. water represented by 100 particles of 0. each. 1 3m 9983 kg

b) water represented by 200 particles of each. 0.1 3m 0.4991 kg

c) 0. water represented by 40 particles of each. 1 3m 0 0.2496 kg

d) water represented by 80 particles of 0. each. 0.1 3m 0 1248 kg

69

Chapter 6. Results

e) water represented by 1 particles of each. 0.1 3m ,600 0.0624 kg

f) 0. water represented by particles of 0. each. 1 3m 3,200 0312 kg

g) water represented by particles of 0. each. 0.1 3m 6,400 0156 kg

Figure 6.14 A vertical capsule filled with water represented by different amounts of
particles. The first column shows the initial particles, the second column shows the particles right

after simulation start, and the third column shows the particles at near-rest.

0.1 3m

70

Chapter 6. Results

 The correlation between the kernel support radius, fluid volume, and particle
mass is visualized on Figure 6.14. The figure shows that the fluid solver is stable
using (5.12) and (5.14) for small-scale simulations. The third column depicts the
water at near-rest, but due to incompressibility issues the visualized volume is not
completely equal. In g) the initial particles reach beyond the capsule shell, which
explains the high concentration of particles in the middle column.

6.4 Performance Tests

In this test we will monitor the performance frequency of the Lagrangian fluid
application. The frequencies are measured in frames per second. Unfortunately, we
do not have any performance references for other particle-based solvers, other than
our own experience with RealFlow3 from Section 1.1, but the performance tests will
give us an idea of the overall interactivity with the application. The performance
tests are executed on a standard PC with an AMD Athlon64 3400+ 2.4GHz
processor with 1GB of memory running the Microsoft Windows XP operating system.
 The interesting part is how many particles we can simulate while still being able
to interact with the system. We will begin by using 10 particles, and continuously
increasing the amount of particles by 10 until we reach 5 particles. We will
perform the tests on a single scene using a capsule as collision container. For each
subtest the particles are initially positioned as a block inside the capsule with no
initial velocity. The simulation is started and the particles will fall under gravity and
collide with the inside of the capsule. The whole system must be relaxed before we
continue to the next subtest, i.e. all particle velocities must be zero or very close to
zero. Each second we record how many frames we have simulated and rendered
since last record. Each subtest will be executed twice, with the capsule in a vertical
position and in a horizontal position, as depicted on

0
0 ,000

Figure 6.15.

a) b)
Figure 6.15 The two performance tests using the same capsule a) in vertical position and b) in

horizontal position. 5, particles are inside the capsule on the figures. 000

71

Chapter 6. Results

 In Table 6.1 we have listed a selection of the performance measure results. On
Figure 6.16 all recorded subtests results are plotted on a performance chart. The
reason to why the frame rate measurements from the horizontal capsule are slightly
better than the measurements from the vertical capsule is most likely implicitly
caused by the lack of incompressibility. The pressure is higher in the bottom of the
vertical capsule than in bottom of the horizontal capsule. High pressure means high
mass-density, and high mass-densities means particles are crammed, thus more
particles are within the compact support radius. The chart on Figure 6.16b is scaled
logarithmically on the -axis and from about 1 particles the graphs are
approximately linear, which is a common indication of cache miss problems.

y , 000

 From Table 6.1 we can state that no more than 2 to water particles can
be simulated interactively in the current working version of our fluid solver. When
the frame rate drops below 10

,500 3,000

fps the fluid will no longer react convincingly to the
interactions performed by an end user. Disabling the spatial hashing grid for fast
neighbor search, and thus performing the standard operations for each

particle, the frame rate quickly drops below 10

()2O n

fps if more than particles are
used in a simulation. This, however, proves that the spatial hashing search grid
does improve the performance greatly. Still, we believe that performance can be
improved further, and some of the performance issues can be dealt with as
discussed in Section

750

5.7, while other issues might need a thorough analysis to
determine the actual internal bottlenecks in the system.

Particles Vertical []fps Horizontal []fps

100 356.24 372.11

200 189.60 208.30

400 92.92 105.75

600 56.43 66.57

800 39.78 47.36

1,000 31.33 36.75

1,200 25.38 29.63

1,400 21.25 24.80

1,600 17.94 21.35

1,800 15.50 18.17

2,000 13.53 16.12

2,500 10.18 12.13

3,000 8.02 9.93

3,500 6.46 8.10

4,000 5.36 6.82

4,500 4.74 5.68

5,000 3.61 5.00

Table 6.1 Results from the performance tests.

72

Chapter 6. Results

a) Performance chart, normal scale -axis. y

b) Performance chart, logarithmic scale y -axis.

Figure 6.16 Performance charts.

 One final note about Figure 6.15 is that it is worth noticing that even though the
same amount of particles are simulated in both cases, the horizontal capsule is
approximately half-full, while approximately only 40% is filling the vertical capsule.
This is an issue regarding the lack of incompressibility, and is discussed in the next
section.

6.5 Issues and Challenges

Incompressibility has been mentioned several times throughout the report. Section
5.2 states that incompressibility can be obtained when k , which also indicates

. However, near-incompressibility can be obtained more painlessly by
decreasing by a factor of 10 and thus increasing the gas stiffness constant as
much as possible within a stable range. We believe that near-incompressibility can
be accepted in Computer Graphics, but a time step of only 1 requires the
simulation to be executed 10 times at each frame to obtain the same visual
experience. Running the fluid simulation 10 times at each frame will cause the

→ ∞
0tΔ →

tΔ

ms

73

Chapter 6. Results

application to deviate from any interactivity if more than 1 particles are used in
a scene.

, 000
Figure 6.17 and Figure 6.18 depict the same water simulation but with

different time step and gas stiffness constant. The frames from the two simulations
are synchronized to match the exact simulation times. The water is expanding very
rapidly in the first couple of milliseconds on Figure 6.18, compared to Figure 6.17.
This is caused by the initial positions of the particles, which seems to be too
compressed for a nearly incompressible fluid. Near-incompressibility is obtained
when using and , which can be verified on 0.001tΔ = s J100k = Figure 6.18.
However, the water seems livelier on Figure 6.17.
 Incompressibility is not only of visual importance. Numerical instabilities can
occur in situations where a large quantity of compressible fluid is constrained in a
pillar container, e.g. the pressure at the bottom becomes extremely high on a small
area. On Figure 6.19 a standard water simulation of particles is illustrated.
The water never calms down. Due to the high pressure at the bottom the water
reacts very turbulently, and continuously emits particles along the faces of the pillar.
We continued the simulation up to a simulation time of , but there was no
change in the unstable behavior. On

4,400

100t = s
Figure 6.20 the same water simulation as from

Figure 6.19 is depicted, but this time we have used the settings for the near-
incompressible water. No instabilities occur in this situation. It is clear that the
water calms down starting at the bottom of the pillar.
 The instabilities from Figure 6.19 do not occur the same way for smooth
containers, e.g. a capsule. The implicit box is discontinuous at the edges and that
can have an effect on the compression of the water particles. The instabilities are
reduced greatly if the pillar is lying down, as the high pressure is distributed over a
larger area.

0.00t s= 0.21t s= 0.42t s= 0.66t s= 0.91t s= 0.99t s= 1.14t s= 1.28t s=

1.39t s= 1.54t s= 1.66t s= 1.80t s= 1.95t s= 2.05t s= 2.14t s= 2.23t s=

Figure 6.17 The fluid is too compressible for 0, water simulated using 2, particles with
 and . Simulation times are listed below the frames.

045 3m 250
0.01t sΔ = 3k = J

74

Chapter 6. Results

0.00t s= 0.21t s= 0.42t s= 0.66t s= 0.91t s= 0.99t s= 1.14t s= 1.28t s=

1.39t s= 1.54t s= 1.66t s= 1.80t s= 1.95t s= 2.05t s= 2.14t s= 2.23t s=

Figure 6.18 Near-incompressibility is obtained perfectly for water simulated using 2,
particles with and . Simulation times are listed below the frames.

0,045 3m 250
0.001t sΔ = 100k = J

0.07t s= 0.48t s= 0.90t s= 1.29t s= 1.63t s= 1.74t s= 2.04t s= 2.36t s=

Figure 6.19 Instabilities occur when the pressure becomes too high for a compressible fluid.

 water constrained in a pillar container. Exact simulation times are listed below the frames. 0,088 3m

0.04t s= 0.33t s= 0.45t s= 0.70t s= 0.90t s= 1.14t s= 1.30t s= 1.94t s=

Figure 6.20 No instabilities occur for a near-incompressible fluid, as the pressure never becomes

too high. Simulation of 0 water. Exact simulation times are listed below the frames. ,088 3m

75

Chapter 6. Results

 The asymmetrical surface tension force density causes strange fluid motion if
the free surfaces of a fluid are represented in one or two dimensions. Figure 6.21
depicts a little interesting simulation of the viscous mucus fluid. All particles are
constrained at the bottom of the box, which subsequently is expanded. As
illustrated on Figure 6.13b the surface tension force only works on the boundary of
the mucus in two dimensions. In the ideal world the surface tension force would
transform the free mucus into a circle, but instead it slowly but continuously
transforms the mucus into every other two-dimensional smooth shape than a circle.
As soon as the free surface of an isolated fluid lump is represented in three
dimensions the surface tension force correctly transforms the fluid into a spherical
shape, e.g. droplets.

Figure 6.21 The asymmetrical surface tension force cause interesting but wrong fluid motion. The

simulation time interval is 1 between each frame from left to right, top to bottom. s

76

7 Future Work

The Lagrangian way of fluid simulation using smoothed particle hydrodynamics
makes CFD in 3D possible at interactive rates. The methods presented in this work
are fundamental and serve as the basic building blocks for interactive fluids.
Although one way to increase the computational performance has been presented
in Section 5.1, there is still room for improvements and extensions. In this chapter
some of the more interesting improvements and extensions are presented, some
already categorized as work in progress.

7.1 GPU Utilization

The graphics processing unit (GPU) has become the most common auxiliary tool to
boost the performance in graphics and simulation applications. With the technology
of a powerful pixel shader that can perform billions of floating point operations per
second in parallel, it will make sense use a GPU in aid for the fluid SPH calculations.
Force density computations, time integration, and visualization can all be performed
on the GPU. If the three steps can be performed entirely on the GPU without
transferring data back to the CPU for additional arrangements, maximum
performance can be obtained. However, as this is not trivial to achieve, some efforts
must be put into this research.

7.2 Fluid Visualization

In this work fluid particles are only visualized as spheres with individual radii. The
possibility to examine the particles makes the fluid flow evident. This is interesting
for an engineer or researcher, but might not impress the observer that expected to
see water and other types of liquids.
 One way to extend the visualization of the fluid particles is to use surface
splatting [38], which is an image space technique that directly renders opaque and
transparent surfaces from point clouds without connectivity. Simpler methods also
exist if only the surface is of interest. The hardware accelerated method for point-
based rendering of isosurfaces in [2] employs an OpenGL implementation that can
render points very efficiently. We can use a similar technique to point render the
particles that have already been identified as being on the fluid surface.
 Another more traditional procedure is to render a reconstructed surface. Within
the area of surface reconstruction lies surface representation. To find a
representation of the fluid surface a function reconstruction method can be applied
to construct an implicit function that best possible describes the surface of the
fluid. The moving least-squares (MLS) method has an approach similar to the color
field used in this work for identifying particles located on the surface. In [31] the
MLS method is used to represent an implicit function from unorganized points and

77

Chapter 7. Future Work

polygons. However, our smoothed color field (4.27) already provides an implicit
expression of the fluid surface.
 Once the surface representation of the fluid has been obtained several
techniques can be applied to extract and render the final fluid surface. A common
high quality offline rendering method is Ray Tracing/Casting, which can be applied
directly to the surface representation. For graphics applications a polygon mesh that
approximates the fluid surface is often required, but must first be extracted from
the surface representation. A very common method for surface extraction is the
marching cubes algorithm [19] that can triangulate any isosurface from the implicit
surface representation.

7.3 Incompressible Lagrangian Fluids

While the SPH method for Lagrangian fluids is fast and flexible, it only allows for
simulation of compressible fluid flow. So far incompressibility for SPH has not been
obtained satisfactory, as the particle mass-densities are not constant in general. In
this work the level of compressibility in SPH is controlled by the gas stiffness
constant k in the pressure spring (5.10). Incompressibility can be obtained by using
infinitely stiff pressure springs. However, this will cause violent instability problems
that might only be solved using an infinitely small time step. An interesting research
area is to follow up on the incompressibility relaxation method presented in [4] and
to find an explicit solution that can maintain the incompressibility for the SPH
method, without compromising the interactivity or the physical representation.

7.4 Advanced Fluid Interactions

Simulating fluids using Lagrangian particles makes it interesting to go into details
on similar Lagrangian methods to simulate rigid and deformable bodies. If fluids,
rigid bodies, and deformable solids all can be derived from Lagrangian particles,
intriguing fluids interactions can be simulated, e.g. solid boxes that plump into a
pool of water, creating a wave that fracture the pool [24]. Phase transition is yet
another solid-fluid application that has been achieved using the Lagrangian SPH
approach [16]. The solid-fluid interactions presented in this work suffer from any
friction. Virtual boundary particles fixed in a body frame can be used to achieve
sticky liquid effects between fluids and solids, e.g. droplets stick to a straw pulled
from a glass of water, and juice inherited the rotation from a rotating glass.
 Interactive fluid-fluid interactions have become manageable using SPH.
Compared to an Eulerian method, it seems like the Lagrangian approach is best
suitable for the simulation of the complex fluid-fluid interactions. In [25] simulations
of a lava lamp illustrate the interactions between different fluid substances, and by
using different rest densities for different fluids, e.g. water and air, a buoyancy
effect can be simulated, e.g. rising air bubbles in water.

78

8 Conclusion

In this report we have studied smoothed particle hydrodynamics, a method that
when used rationally can render interactive fluid simulations possible without
additional hardware support. We have derived the Navier-Stokes equations for
particle-based fluid motions and employed the SPH method to compute all the
complex physical quantity fields. Applying SPH directly to the different force
densities does not always guarantee in conservation of Newton’s 3rd law. We have
used additional SPH techniques to symmetrize the internal forces such that linear
and angular momenta are conserved.
 The SPH method is a powerful tool that reduces the complexity of the
mathematical equations of fluid flows, but as it originally was designed for
compressible flow problems, the lack of incompressibility is the one major drawback
of the method. A liquid fluid, like water, is generally considered incompressible for
small-scale systems, and that assumption is further used in the derivation of the
Navier-Stokes equations. We have shown how to use SPH for near-incompressibility
without any redesign of the model. However, near-incompressibility implies using
smaller integration time steps, which consequently affects the interactivity.
 We have described the meaning of the physical parameters required to simulate
particle-based fluids, and we have tried to find a connection between some of them
in ways that can be considered intuitive for an end user. Further, we have found
that the dependencies between the connected parameters work well with respect to
stability, and allow for various types of fluids to be described without much work.
 Based on the theory presented in this report we have implemented an open-
source particle-based fluid solver that runs interactively for various types of small-
scale simulations. However, even though up to 3, particles can be simulated
convincingly, the performance rate is not as good as we have hoped. We believe
that a higher simulation frequency can be obtained once we improve the cache
issues. Still, we have proven that Lagrangian fluid dynamics using SPH is superior to
Eulerian fluid dynamics when it comes to real-time fluid simulations. This conclusion
is drawn based on the computation times from Section

000

2.2 and our own
performance measurement from Section 6.4.
 We believe that we have achieved our goals of describing and developing a
method to simulate fluids at interactive rates and to use as physically correct fluids
parameters as possible. Although, we have not focused on the visualization of the
free surfaces, a fast and visually pleasing method is required for the SPH method to
become useful in e.g. computer games. With our work in progress on real-time fluid
visualization we further believe that our particle-based fluid solver will be an
acknowledged contribution to OpenTissue that can inspire potential users of
interactive fluid modeling and design.

79

Chapter 8. Conclusion

8.1 Contributions

Based on the previous work done in the field of particle-based fluid simulations, this
report contributes:

• A thorough insight of the mathematical theory of particle-based fluid motion

• Physically correct fluid parameters

• Stable collision handling between fluid particles and implicit primitives

• Visual analysis of fluid flows using SPH in Computer Graphics

• A complete open-source implementation of particle-based fluids

80

References

 [1] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
"Computational Geometry: Algorithms and Applications", second edition.
Springer-Verlag, 2000.

 [2] J. A. Bærentzen and N. J. Christensen. "Hardware Accelerated Point
Rendering of Isosurfaces". Journal of WSCG, vol. 11, no.1, pp. 41-48, 2003.

 [3] A. Colagrossi and M. Landrini. "Numerical simulation of interfacial flows by
smoothed particle hydrodynamics". Journal of Computational Physics,
Volume 191, Issue 2, pp. 448-475, 2003.

 [4] S. Clavet, P. Beaudoin, and P. Poulin. "Particle-based Viscoelastic Fluid
Simulation". Proceedings of the Eurographics Symposium on Point-Based
Graphics, pp. 219-228, 2005.

 [5] M. Desbrun and M.-P. Cani. “Smoothed Particles: A new paradigm for
animating highly deformable bodies”. In Computer Animation and Simulation
’96, pp. 61–76, 1996.

 [6] D. Eberly. "Game Physics". Morgan Kaufmann, 2003.

 [7] K. Erleben, J. Sporring, K. Henriksen, and H. Dohlmann. ”Physics-Based
Animation”. Charles River Media, 2005.

 [8] N. Foster and R. Fedkiw. "Practical Animation of Liquids". In proceedings of
SIGGRAPH 2001, pp. 15-22, 2001.

 [9] N. Foster and D. Metaxas. "Modeling the Motion of a Hot, Turbulent Gas". In
Computer Graphics Proceedings 1997, Annual Conference Series, pp. 181–
188, 1997.

[10] T. G. Goktekin, A. W. Bargteil, and J. F. O’Brien. “A Method for Animating
Viscoelastic Fluids”. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH
2004), vol. 23, pp. 463-467, 2004.

[11] M. J. Harris. "Fast Fluid Dynamics Simulations on the GPU". In GPU Gems,
Programming Techniques, Tips, and Tricks for Real-Time Graphics, Edited by
R. Fernando, Chapter 38. Addision-Wesley, 2004.

[12] J. Hongbin and D. Xin. "On criterions for smoothed particle hydrodynamics
kernels in stable field". Journal of Computational Physics, 202, pp. 699–
709, 2005.

[13] B. Houston, M. Wiebe, and C. Batty. "RLE Sparse Level Sets". Proceedings of
the SIGGRAPH 2004 Conference on Sketches & Applications, 2004.

81

References

[14] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. "Hierarchical
RLE Level Set: A Compact and Versatile Deformable Surface
Representation". To appear in ACM Transactions on Graphics, 2006.
Conditionally Accepted April 4, 2005.

[15] T. Jakobsen. "Advanced Character Physics". In proceedings of Game
Developer's Conference, 2001.

[16] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and M. Gross. “A Unified
Lagrangian Approach to Solid-Fluid Animation”. Proceedings of the
Eurographics Symposium on Point-Based Graphics, 2005.

[17] S. Koshizuka, H. Tamako, and Y. Oka. ”A particle method for incompressible
viscous flow with fluid fragmentation”. Computational Fluid Dynamics
Journal, 4, pp. 29-46, 1995.

[18] A. T. Layton and M. van de Panne. "A Numerically Efficient and Stable
Algorithm for Animating Water Waves". The Visual Computer, Vol. 18, No. 1,
pp. 41-53, 2002.

[19] W. E. Lorensen and H. E. Cline. "Marching cubes: A high resolution 3D
surface construction algorithm". In Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pp. 163–169,
1987.

[20] F. Losasso, F. Gibou, R. Fedkiw. "Simulating Water and Smoke with an Octree
Data Structure". In proceedings of SIGGRAPH 2004, pp. 457-462, 2004.

[21] J. J. Monaghan. “Smoothed Particle Hydrodynamics”. Annual Review of
Astronomy and Astrophysics, 30, pp. 543-574, 1992.

[22] M. Moore and J. Wilhelms. “Collision Detection and Response for Computer
Animation”. In Computer Graphics, Volume 22, pp. 289-298, 1988.

[23] M. Müller, D. Charypar, and M. Gross. “Particle-Based Fluid Simulation for
Interactive Applications”. Proceedings of 2003 ACM SIGGRAPH Symposium
on Computer Animation, pp. 154-159, 2003.

[24] M. Müller, S. Schirm, M. Teschner, B. Heidelberger, and M. Gross.
“Interaction of Fluids with Deformable Solids”. In Journal of Computer
Animation and Virtual Worlds (CAVW), vol 15, no. 3-4, pp. 159-171, 2004.

[25] M. Müller, B. Solenthaler, R. Keiser, and M. Gross. “Particle-Based Fluid-Fluid
Interaction”. Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pp. 237-244, 2005.

[26] M. B. Nielsen and K. Museth. "Dynamic Tubular Grid: An Efficient Data
Structure and Algorithms for High Resolution Level Sets". Journal of
Scientific Computing, 2005.

82

References

[27] S. Osher and R. Fedkiw. “Level Set Methods and Dynamic Implicit Surfaces”.
Vol. 153 of Applied Mathematical Sciences. Springer, 2003.

[28] OpenTissue. “Opensource Project, Physical based Animation and Surgery
Simulation”. 2005. www.opentissue.org.

[29] PhysX. “PhysX”. AGEIA. 2005. http://www.ageia.com/products/physx.html.

[30] RealFlow3. “RealFlow3”. Next Limit Technologies. 2005.
http://www.nextlimit.com/realflow/index.html.

[31] C. Shen, J. F. O'Brien, J. R. Shewchuk. "Interpolating and Approximating
Implicit Surfaces from Polygon Soup". The Proceedings of ACM SIGGRAPH
2004, pp. 896-904, 2004.

[32] J. Stam and E. Fiume. "Depicting Fire and other Gaseous Phenomena using
Diffusion Processes". Computer Graphics, 29th Annual Conference Series,
pp. 129–136, 1995.

[33] J. Stam. “Stable Fluids”. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pp. 121-128, 1999.

[34] D. Stora, P.-O. Agliati, M.-P. Cani, F. Neyret, and J.-D. Gascuel. "Animating
Lava Flows". In Graphics Interface, pp. 203–210, 1999.

[35] D. Terzopoulos, J. C. Platt, A. H. Barr, and K. Fleischer (1987), “Elastically
deformable models”, Computer Graphics, volume 21, Number 4, July 1987,
pp 205-214, 1987.

[36] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranerts, and M. Gross.
“Optimized Spatial Hashing for Collision Detection of Deformable Objects”. In
proceedings of Vision, Modeling, Visualization, pp. 47-54, November 19-21,
2003.

[37] L. Verlet. "Computer Experiments on Classical Fluids I: Thermodynamical of
Lennard-Jones Molecules". Physics Review, vol. 159, pp. 98-103, 1967.

[38] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. "Surface Splatting”. In
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, pp. 371–378, 2001.

83

	1 Introduction
	1.1 Software Solutions
	1.2 Goals
	1.3 Overview

	2 Classical Fluid Dynamics
	2.1 The Navier-Stokes Equations
	2.2 Eulerian Fluids
	2.3 Summery

	3 Smoothed Particle Hydrodynamics
	3.1 Definitions
	3.2 Smoothing Kernels
	3.3 Summery

	4 Lagrangian Fluid Dynamics
	4.1 Mass-Density
	4.2 Internal Forces
	4.2.1 Pressure
	4.2.2 Viscosity

	4.3 External Forces
	4.3.1 Gravity
	4.3.2 Buoyancy
	4.3.3 Surface Tension
	4.3.4 User Interaction

	4.4 Collision Handling
	4.4.1 Collision Detection
	4.4.2 Implicit Primitives
	4.4.2.1 Spheres
	4.4.2.2 Capsules
	4.4.2.3 Boxes

	4.4.3 Collision Response
	4.4.3.1 Hybrid Impulse-Projection method

	4.4.4 Discussion

	4.5 Numerical Time Integration
	4.5.1 The Implicit Euler Scheme
	4.5.2 The Verlet Scheme
	4.5.3 The Leap-Frog Scheme
	4.5.4 Discussion

	4.6 Summery

	5 Implementation
	5.1 Fast Nearest Neighbor Search
	5.1.1 Spatial Hashing
	5.1.2 Spatial Particle Queries

	5.2 Incompressibility
	5.2.1 Discussion

	5.3 Physical Parameters
	5.3.1 Fluid Volume and Particle Mass
	5.3.2 Smoothing Kernel Support Radius
	5.3.3 Time Integrator and Time Step
	5.3.4 Gas Stiffness and Rest Density
	5.3.5 Viscosity Coefficient
	5.3.6 Surface Tension and Threshold

	5.4 Fluid Materials
	5.4.1 Water
	5.4.2 Mucus
	5.4.3 Steam

	5.5 Rendering
	5.6 The Lagrangian Fluid Method
	5.6.1 Initialize SPH System
	5.6.2 Compute Density and Pressure
	5.6.3 Compute Internal Forces
	5.6.4 Compute External Forces
	5.6.5 Time Integration and Collision Handling
	5.6.6 Render Particles

	5.7 Discussion
	5.8 Summery

	6 Results
	6.1 Fluid Properties
	6.2 Fluid Flows
	6.3 Sanity and Stability
	6.4 Performance Tests
	6.5 Issues and Challenges

	7 Future Work
	7.1 GPU Utilization
	7.2 Fluid Visualization
	7.3 Incompressible Lagrangian Fluids
	7.4 Advanced Fluid Interactions

	8 Conclusion
	8.1 Contributions

	References

